Integrator Resources

The official home for NAI Support

Not sure where to start? Try Quick Start Guide or ask a question below!

Toggle Components with Visual Button
JavaScript Form Processing

Strain Gauge Measurement Module

INTRODUCTION

This module manual provides information about the North Atlantic Industries, Inc. (NAI) Strain Gauge (SG) Measurement Function Module: SG1. This module is compatible with all latest generation NAI motherboards.

The SG1 provides four differential input channels for load cell & accelerometer measurement.

FEATURES

  • Four independent, isolated input A/Ds

  • Designed to read output signals from a completed Wheatstone bridge

  • Used in applications requiring pressure, weight and stress transducers interface/measurement.

  • On-chip digital filtering for wide dynamic range signal measurement

  • DC excitation for load and accelerometer gauge interface (programmable from 2-12 VDC)

  • Onboard management of A/D interface, register access and sample timing

  • Internal and system calibration included

PRINCIPLE OF OPERATION

The SG1 module is NAI’s latest generation Strain Gauge Measurement Module. This intelligent, four-channel module is used on our multifunction embedded boards and SBCs to provide load cell and accelerometer element measurement interfaces.

While there are several methods of measuring mechanical strain, the most common is with a strain gauge. The gauge provides electrical resistance that varies in proportion to the amount of strain in the device. The most widely used gauge is the bonded metallic strain gauge. To measure such small changes in resistance, strain gauges are almost always used in a bridge configuration with a voltage excitation source. The general Wheatstone bridge (conventional, 4-arm bridge) consists of four resistive arms with an excitation voltage, Vexc, that is applied across the bridge.

The SG1 module uses four independent, isolated input A/Ds. This module is designed to read output signals from a completed Wheatstone bridge (i.e., it can be used with one or more strain gauge elements as a completed 4-arm Wheatstone bridge) and is commonly used in applications requiring pressure, weight, and stress transducers interface/measurement. Each channel incorporates a Σ–Δ (Sigma-Delta) modulator, a PGA, and on-chip digital filtering intended for the measurement of wide dynamic range signals. Each channel also contains a fourth order digital filter, with several programmable filter options. When properly applied, the filter has deep notches at either 50 or 60 Hz.

The SG1 module provides a DC excitation, programmable from 2 - 12 VDC for interfacing to most load and accelerometer gauges.

The on-board processor/FPGA resources remove the user from the details of managing the A/D interface, register access, and sample timing. The processor firmware provides the user with a simpler user interface with high-level commands and post-calibration data. The module also contains internal factory calibration values stored in Flash.

Automatic Background Built-in Test (BIT)/Diagnostic Capability

Automatic background BIT testing is provided. Each channel is checked at periodic intervals for correct A/D operation. Any failure triggers an interrupt if enabled, with the results available in the status registers. The testing is transparent to the user and has no effect on the operation of this module.

Status and Interrupts

The SG Strain Gauge Measurement Module provide registers that indicate faults or events. Refer to “Status and Interrupts Module Manual” for the Principle of Operation description.

Module Common Registers

The SG Strain Gauge Measurement Module includes module common registers that provide access to module-level bare metal/FPGA revisions & compile times, unique serial number information, and temperature/voltage/current monitoring. Refer to “Module Common Registers Module Manual” for the detailed information.

REGISTER DESCRIPTIONS

The register descriptions provide the Register Name, Type, Data Range, Read or Write information, power on default initialized values, a description of the function and a data table where applicable.

SG1 Measurement Registers

The SG1 measurement registers provide Vout/Vexc ratio measurements, strain measurements, and minimum/maximum strain readings.

Vout/Vexc

Function: Measures the ratio of the bridge output voltage to the excitation voltage.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1.0 to +1.0

Read/Write: R

Initialized Value: N/A

Operational Settings: Vout/Vexc measurement in V/V

Table 1. Vout/Vexc

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Strain

Function: Measures the level of mechanical strain.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R

Initialized Value: N/A

Operational Settings: Strain is calculated based on the Vout/Vexc reading, bridge configuration type, nominal strain gauge resistance, gauge factor, Poisson ratio, and lead resistance. Units are in micro-strain (µε).

Minimum Strain

Function: Stores the minimum strain level. When a new strain reading is lower than the value in this register, it will replace it.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R

Initialized Value: N/A

Operational Settings: Reset this value to zero by writing to the min/max reset register.

Maximum Strain

Function: Stores the maximum strain level. When a new strain reading is higher than the value in this register, it will replace it.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R

Initialized Value: N/A

Operational Settings: Reset this value to zero by writing to the min/max reset register

SG1 Control Registers

The SG1 control registers provide the ability to configure the channels for the strain gauge interface and application.

Bridge Configuration Type

Function: Selects the bridge and strain gauge configuration.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0x6

Read/Write: R/W

Initialized Value: 0x0 (Quarter Bridge 1)

Operational Settings: See below table for compatible configurations.

SG 01 Img02

PGA

Function: Sets the gain of the A/D.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0x5 (See table)

Read/Write: R/W

Initialized Value: 0x2 (4V/V)

Operational Settings: Set the value based on the PGA table

PGA Register Value

Gain (V/V)

0x0

1

0x1

2

0x2

4

0x3

8

0x4

16

0x5

32

Table 2. PGA

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

Sample Rate

Function: Sets the sampling rate of the A/D.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0xF (See table)

Read/Write: R/W

Initialized Value: 0x0 (2.5 SPS)

Operational Settings: Set the value based on Sample Rate table. Note: lower rates provide greater stability and accuracy in the readings. Per channel configuration.

Sample Rate Register Value

Sample Rate (SPS)

Bandwidth (Hz)

0x0

2.5

1.25

0x1

5

2.5

0x2

10

5

0x3

16.6666 8.3333

0x4

20

10

0x5

50

25

0x6

60

30

0x7

100

50

0x8

400

200

0x9

1200

600

0xA

2400

1200

0xB

4800

2400

0xC

7200

3600

0xD

14400

7200

0xE

19200

9600

0xF

Table 3. Sample Rate

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

D

Nominal Strain Gauge Resistance

Function: User defined resistance of the strain gauge in an unstrained condition.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 350.0 (programmed in ohms)

Operational Settings: Sets the user defined nominal strain gauge resistance to be used for strain calculation.

Gauge Factor

Function: User defined ratio of the fractional change in resistance to the fractional change in strain.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 2.0

Operational Settings: Sets the user defined gauge factor to be used for strain calculation.

Poisson Ratio

Function: User defined negative ratio of the strain in the transverse direction to the strain in the axial direction.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.3

Operational Settings: Sets the user defined Poisson ratio to be used for strain calculation.

Lead Resistance

Function: User defined resistance of the wires connecting the bridge to the module.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0 (programmed in ohms)

Operational Settings: Sets the user defined lead resistance to be used for strain calculation.

Excitation Voltage

Function: User defined bridge excitation voltage.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0xFFF (0.0V to 12V)

Read/Write: R/W

Initialized Value: 0x0 (off)

Operational Settings: Programmable bridge excitation voltage up to 12V. 12-bit value, LSB is calculated by 12V / (2^12 -1) and is approximately 2.93mV.

Table 4. Excitation Voltage

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

D

D

D

D

D

D

D

D

D

D

D

D

Wire Select Mode

Function: Selects where to sense the excitation voltage. A 6-wire connection is required to sense the excitation voltage at the bridge. If the voltage sensing is done internally, only 4 wires are required.

Type: unsigned binary word (32-bit)

Data Range: 0x4, 0x6

Read/Write: R/W

Initialized Value: 0x4 (internal sensing)

Operational Settings: Set the Wire Measurement Mode as specified in the table.

Wire Select Mode Value

Description

0x4

4-wire configuration, internal sensing

0x6

6-wire configuration, remote sensing

Table 5. Wire Select Mode

D31

D30

D29

D28

D27

D26

D25

D2

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

Reset Minimum and Maximum Strain

Function: Resets the channel’s minimum and maximum strain readings.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0xF

Read/Write: W

Initialized Value: 0x0

Operational Settings: Writing a '1' resets the channel’s minimum and maximum strain readings to 0.0. Bit-mapped by channel.

Table 6. Reset Minimum and Maximum Strain

D31

D30

D29

D28

D27

D26

D25

D2

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

D

Use Internal Bridge Completion

Function: Enables the bridge completion circuitry. When enabled, the user needs only to connect a half-bridge, and connect the bridge completion pin to the sense low pin.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0xF

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: If configured with two arms of the Wheatstone bridge external to the module, the user must complete the bridge using the module’s internal half-bridge. This is accomplished by wiring the BRG-COMP pin to the BRG - pin (as shown below).

SG 01 Img03

Writing a 1 enables the bridge completion circuit for the channel. Bit-mapped per channel.

Table 7. Use Internal Bridge Completion

D31

D30

D29

D28

D27

D26

D25

D2

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

D

Strain Alert Detect Programming

The SG1 Strain Alert registers provide the ability to program four strain thresholds that will result in strain alerts.

Strain Alert Detect 1

A “low” and a “high” threshold value is specified for each strain threshold that will be used to set the Strain Alert statuses. The Low Strain Alert 1 register sets the threshold value to use to set the Low Strain Alert 1 status bit when the Strain reading is less than or equal to the low strain threshold value. Conversely, the High Strain Alert 1 register sets the threshold values to use to set the High Strain Alert 1 status bit when the Strain reading is greater than or equal to the high strain threshold value. These threshold values are individually configurable on a per channel basis.

Low Strain Alert 1

Function: Sets Low Strain Alert 1 value in micro-strain (µε) for each channel.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: If the measured strain is less than or equal to the set value, then a Low Strain Alert 1 Status will be set. An interrupt will occur if the Low Strain Alert 1 Interrupt Enable register is set to 1.

High Strain Alert 1

Function: Sets High Strain Alert 1 value in micro-strain (µε) for each channel.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: If the measured strain is greater than or equal to the set value, then a High Strain Alert 1 Status will be set. An interrupt will occur if the High Strain Alert 1 Interrupt Enable register is set to 1.

Strain Alert Detect 2

A “low” and a “high” threshold value is specified for each strain threshold that will be used to set the Strain Alert statuses. The Low Strain Alert 2 register sets the threshold value to use to set the Low Strain Alert 2 status bit when the Strain reading is less than or equal to the low strain threshold value. Conversely, the High Strain Alert 2 register sets the threshold values to use to set the High Strain Alert 2 status bit when the Strain reading is greater than or equal to the high strain threshold value. These threshold values are individually configurable on a per channel basis.

Low Strain Alert 2

Function: Sets Low Strain Alert 2 value in micro-strain (µε) for each channel.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: If the measured strain is less than or equal to the set value, then a Low Strain Alert 2 Status will be set. An interrupt will occur if the Low Strain Alert 2 Interrupt Enable register is set to 1.

High Strain Alert 2

Function: Sets High Strain Alert 2 value in micro-strain (µε) for each channel.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: -1000.0 to 1000.0

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: If the measured strain is greater than or equal to the set value, then a High Strain Alert 2 Status will be set. An interrupt will occur if the High Strain Alert 2 Interrupt Enable register is set to 1.

Module Common Registers

Refer to “Module Common Registers Module Manual” for the register descriptions.

Status and Interrupt Registers

The SG1 Module provides status registers for BIT, and Strain Alert.

BIT Loop Status

Function: This test represents the dynamic status of the BIT Loop test that checks the A/D interface and A/D operation health

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R

Initialized Value: 0

Operational Settings: The logic OR of this status along with the BIT Amp Status makes up the overall BIT status.

Table 8. BIT Loop Status

D31

D30

D29

D28

D27

D26

D25

D2

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

Ch4

Ch3

Ch2

Ch1

BIT Amp Status

Function: This test represents the dynamic status of the BIT Amp test that checks the front-end circuitry of the channel

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R

Initialized Value: 0

Operational Settings: The logic OR of this status along with the BIT Loop Status makes up the overall BIT status

Table 9. BIT Amp Status

D31

D30

D29

D28

D27

D26

D25

D2

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

Ch4

Ch3

Ch2

Ch1

BIT Status

There are four registers associated with the BIT Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

Table 10. Bit Status

BIT Dynamic Status

BIT Latched Status

BIT Interrupt Enable

BIT Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D2

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

Ch4

Ch3

Ch2

Ch1

Function: Indicates the corresponding channel BIT status or configuration

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Strain Alert Status

There are four registers associated with each of the Strain Alert Statuses: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

Table 11. Strain Alert Status

Strain Alert Low 1 Dynamic Status

Strain Alert Low 1 Latched Status

Strain Alert Low 1 Interrupt Enable

Strain Alert Low 1 Set Edge/Level Interrupt

Strain Alert High 1 Dynamic Status

Strain Alert High 1 Latched Status

Strain Alert High 1 Interrupt Enable

Strain Alert High 1 Set Edge/Level Interrupt

Strain Alert Low 2 Dynamic Status

Strain Alert Low 2 Latched Status

Strain Alert Low 2 Interrupt Enable

Strain Alert Low 2 Set Edge/Level Interrupt

Strain Alert High 2 Dynamic Status

Strain Alert High 2 Latched Status

Strain Alert High 2 Interrupt Enable

Strain Alert High 2 Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D2

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

Ch4

Ch3

Ch2

Ch1

Function: Sets the corresponding bit associated with the channel’s Strain Alert indication for strain readings that are below or above the associated thresholds.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Summary Status

There are four registers associated with the Summary Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt

Table 12. Summary Status

Summary Status Dynamic Status

Summary Status Latched Status

Summary Status Interrupt Enable

Summary Status Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D2

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

Ch4

Ch3

Ch2

Ch1

Function: Sets the corresponding bit when a fault is detected for BIT on that channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Note
The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Sets where to direct the interrupt.

Type: unsigned binary word (32-bit)

Data Range: See table Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME

1

Direct Interrupt to ARM Processor (via SerDes) (Custom App on ARM or NAI Ethernet Listener App)

2

Direct Interrupt to PCIe Bus

5

Direct Interrupt to cPCI Bus

6

FUNCTIONAL REGISTER MAP

Key:

Bold Italic = Input

Bold Underline = Output

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e. write-1-to-clear, writing a '1' to a bit set to '1' will set the bit to '0'). ~ Data is always in Floating Point.

SG1 Measurement Registers

0x2034

Vout/Vexc Ch 1~

R

0x2134

Vout/Vexc Ch 2~

R

0x2234

Vout/Vexc Ch 3~

R

0x2334

Vout/Vexc Ch 4~

R

0x2038

Strain (µε) Ch 1~

R

0x2138

Strain (µε) Ch 2~

R

0x2238

Strain (µε) Ch 3~

R

0x2338

Strain (µε) Ch 4~

R

0x203C

Minimum Strain (µε) Ch 1~

R

0x213C

Minimum Strain (µε) Ch 2~

R

0x223C

Minimum Strain (µε) Ch 3~

R

0x233C

Minimum Strain (µε) Ch 4~

R

0x2040

Maximum Strain (µε) Ch 1~

R

0x2140

Maximum Strain (µε) Ch 2~

R

0x2240

Maximum Strain (µε) Ch 3~

R

0x2340

Maximum Strain (µε) Ch 4~

R

SG1 Control Registers

0x2000

Bridge Configuration Type Ch 1

R/W

0x2100

Bridge Configuration Type Ch 2

R/W

0x2200

Bridge Configuration Type Ch 3

R/W

0x2300

Bridge Configuration Type Ch 4

R/W

0x2044

PGA Ch 1

R/W

0x2144

PGA Ch 2

R/W

0x2244

PGA Ch 3

R/W

0x2344

PGA Ch 4

R/W

0x201C

Sample Rate Ch 1

R/W

0x211C

Sample Rate Ch 2

R/W

0x221C

Sample Rate Ch 3

R/W

0x231C

Sample Rate Ch 4

R/W

0x2004

Nominal Strain Gauge Resistance Ch 1

R/W

0x2104

Nominal Strain Gauge Resistance Ch 2

R/W

0x2204

Nominal Strain Gauge Resistance Ch 3

R/W

0x2304

Nominal Strain Gauge Resistance Ch 4

R/W

0x2008

Gauge Factor Ch 1

R/W

0x2108

Gauge Factor Ch 2

R/W

0x2208

Gauge Factor Ch 3

R/W

0x2308

Gauge Factor Ch 4

R/W

0x200C

Poisson Ratio Ch 1

R/W

0x210C

Poisson Ratio Ch 2

R/W

0x220C

Poisson Ratio Ch 3

R/W

0x230C

Poisson Ratio Ch 4

R/W

0x2010

Lead Resistance Type Ch 1

R/W

0x2110

Lead Resistance Type Ch 2

R/W

0x2210

Lead Resistance Type Ch 3

R/W

0x2310

Lead Resistance Type Ch 4

R/W

0x2014

Excitation Voltage Ch 1

R/W

0x2114

Excitation Voltage Ch 2

R/W

0x2214

Excitation Voltage Ch 3

R/W

0x2314

Excitation Voltage Ch 4

R/W

0x2018

4-Wire/6-Wire Select Ch 1

R/W

0x2118

4-Wire/6-Wire Select Ch 2

R/W

0x2218

4-Wire/6-Wire Select Ch 3

R/W

0x2318

4-Wire/6-Wire Select Ch 4

R/W

0x1000

Reset Minimum and Maximum Strain Ch 1-4

R/W

0x1004

Use Internal Bridge Completion Ch 1-4

R/W

Strain Alert Detect Programming Registers

0x2028

Low Strain Alert 1 Ch 1~

R

0x2128

Low Strain Alert 1 Ch 2~

R

0x2228

Low Strain Alert 1 Ch 2~

R

0x2328

Low Strain Alert 1 Ch 2~

R

0x202C

Low Strain Alert 2 Ch 1~

R

0x212C

Low Strain Alert 2 Ch 2~

R

0x222C

Low Strain Alert 2 Ch 2~

R

0x232C

Low Strain Alert 2 Ch 2~

R

0x2020

High Strain Alert 1 Ch 1~

R

0x2120

High Strain Alert 1 Ch 2~

R

0x2220

High Strain Alert 1 Ch 2~

R

0x2320

High Strain Alert 1 Ch 2~

R

0x2024

High Strain Alert 2 Ch 1~

R

0x2124

High Strain Alert 2 Ch 2~

R

0x2224

High Strain Alert 2 Ch 2~

R

0x2324

High Strain Alert 2 Ch 2~

R

Module Common Registers

Refer to “Module Common Registers Module Manual” for the Module Common Registers Function Register Map.

Status Registers

0x1100

BIT Loop Status Ch 1-4

R/W

0x1104

BIT Amp Status Ch 1-4

R/W

BIT Registers

0x0800

Dynamic Status

R

0x0804

Latched Status*

R/W

0x0808

Interrupt Enable

R/W

0x080C

Set Edge/Level Interrupt

R/W

Status Registers

High Strain Alert 1

0x0820

Dynamic Status

R

0x0824

Latched Status*

R/W

0x0828

Interrupt Enable

R/W

0x082C

Set Edge/Level Interrupt

R/W

High Strain Alert 2

0x0830

Dynamic Status

R

0x0834

Latched Status*

R/W

0x0838

Interrupt Enable

R/W

0x083C

Set Edge/Level Interrupt

R/W

Low Strain Alert 1

0x0840

Dynamic Status

R

0x0844

Latched Status*

R/W

0x0848

Interrupt Enable

R/W

0x084C

Set Edge/Level Interrupt

R/W

Low Strain Alert 2

0x0850

Dynamic Status

R

0x0854

Latched Status*

R/W

0x0858

Interrupt Enable

R/W

0x085C

Set Edge/Level Interrupt

R/W

Error Summary

0x09A0

Dynamic Status

R

0x09A4

Latched Status*

R/W

0x09A8

Interrupt Enable

R/W

0x09AC

Set Edge/Level Interrupt

R/W

Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are located on the Motherboard Memory Space and do not require any Module Address Offsets. These registers are accessed using the absolute addresses listed in the table below.

0x0500

Module 1 Interrupt Vector 1 - BIT

R/W

0x0504

Module 1 Interrupt Vector 2 - Reserved

R/W

0x0508

Module 1 Interrupt Vector 3 - Strain Alert Low 1

R/W

0x050C

Module 1 Interrupt Vector 4 - Strain Alert Low 2

R/W

0x0510

Module 1 Interrupt Vector 5 - Strain Alert High 1

R/W

0x0514

Module 1 Interrupt Vector 6 - Strain Alert High 2

R/W

0x0518 to 0x0564

Module 1 Interrupt Vector 7-26 - Reserved

R/W

0x0568

Module 1 Interrupt Vector 27 - Summary

R/W

0x056C to 0x057C

Module 1 Interrupt Vector 28-32 - Reserved

R/W

0x0600

Module 1 Interrupt Steering 1 - BIT

R/W

0x0604

Module 1 Interrupt Steering 2 - Reserved

R/W

0x0608

Module 1 Interrupt Steering 2 - Strain Alert Low 1

R/W

0x060C

Module 1 Interrupt Steering 3 - Strain Alert Low 2

R/W

0x0610

Module 1 Interrupt Steering 4 - Strain Alert High 1

R/W

0x0614

Module 1 Interrupt Steering 5 - Strain Alert High 2

R/W

0x0618 to 0x0664

Module 1 Interrupt Steering 6-26 - Reserved

R/W

0x0668

Module 1 Interrupt Steering 27 - Summary

R/W

0x066C to 0x067C

Module 1 Interrupt Steering 28-32 - Reserved

R/W

0x0700

Module 2 Interrupt Vector 1 - BIT

R/W

0x0704

Module 2 Interrupt Vector 2 - Reserved

R/W

0x0708

Module 2 Interrupt Vector 3 - Strain Alert Low 1

R/W

0x070C

Module 2 Interrupt Vector 4 - Strain Alert Low 2

R/W

0x0710

Module 2 Interrupt Vector 5 - Strain Alert High 1

R/W

0x0714

Module 2 Interrupt Vector 6 - Strain Alert High 2

R/W

0x0718 to 0x0764

Module 2 Interrupt Vector 7-26 - Reserved

R/W

0x0768

Module 2 Interrupt Vector 27 - Summary

R/W

0x076C to 0x077C

Module 2 Interrupt Vector 28-32 - Reserved

R/W

0x0800

Module 2 Interrupt Steering 1 - BIT

R/W

0x0804

Module 2 Interrupt Steering 2 - Reserved

R/W

0x0808

Module 2 Interrupt Steering 3 - Strain Alert Low 1

R/W

0x080C

Module 2 Interrupt Steering 4 - Strain Alert Low 2

R/W

0x0810

Module 2 Interrupt Steering 5 - Strain Alert High 1

R/W

0x0814

Module 2 Interrupt Steering 6 - Strain Alert High 2

R/W

0x0868

Module 2 Interrupt Steering 27 - Summary

R/W

0x0818 to 0x0864

Module 2 Interrupt Steering 7-26 - Reserved

R/W

0x086C to 0x087C

Module 2 Interrupt Steering 28-32 - Reserved

R/W

0x0900

Module 3 Interrupt Vector 1 - BIT

R/W

0x0904

Module 3 Interrupt Vector 2 - Reserved

R/W

0x0908

Module 3 Interrupt Vector 3 - Strain Alert Low 1

R/W

0x090C

Module 3 Interrupt Vector 4 - Strain Alert Low 2

R/W

0x0910

Module 3 Interrupt Vector 5 - Strain Alert High 1

R/W

0x0914

Module 3 Interrupt Vector 6 - Strain Alert High 2

R/W

0x0918 to 0x0964

Module 3 Interrupt Vector 7-26 - Reserved

R/W

0x0968

Module 3 Interrupt Vector 27 - Summary

R/W

0x096C to 0x097C

Module 3 Interrupt Vector 28-32 - Reserved

R/W

0x0A00

Module 3 Interrupt Steering 1 - BIT

R/W

0x0A04

Module 3 Interrupt Steering 2 - Reserved

R/W

0x0A08

Module 3 Interrupt Steering 3 - Strain Alert Low 1

R/W

0x0A0C

Module 3 Interrupt Steering 4 - Strain Alert Low 2

R/W

0x0A10

Module 3 Interrupt Steering 5 - Strain Alert High 1

R/W

0x0A14

Module 3 Interrupt Steering 6 - Strain Alert High 2

R/W

0x0A18 to 0x0A64

Module 3 Interrupt Steering 7-26 - Reserved

R/W

0x0A68

Module 3 Interrupt Steering 27 - Summary

R/W

0x0A6C to 0x0A7C

Module 3 Interrupt Steering 28-32 - Reserved

R/W

0x0B00

Module 4 Interrupt Vector 1 - BIT

R/W

0x0B04

Module 4 Interrupt Vector 2 - Reserved

R/W

0x0B08

Module 4 Interrupt Vector 3 - Strain Alert Low 1

R/W

0x0B0C

Module 4 Interrupt Vector 4 - Strain Alert Low 2

R/W

0x0B10

Module 4 Interrupt Vector 5 - Strain Alert High

R/W

0x0B14

Module 4 Interrupt Vector 6 - Strain Alert High 2

R/W

0x0B18 to 0x0B64

Module 4 Interrupt Vector 7-26 - Reserved

R/W

0x0B68

Module 4 Interrupt Vector 27 - Summary

R/W

0x0B6C to 0x0B7C

Module 4 Interrupt Vector 28-32 - Reserved

R/W

0x0C00

Module 4 Interrupt Steering 1 - BIT

R/W

0x0C04

Module 4 Interrupt Steering 2 - Reserved

R/W

0x0C08

Module 4 Interrupt Steering 3 - Strain Alert Low 1

R/W

0x0C0C

Module 4 Interrupt Steering 4 - Strain Alert Low 2

R/W

0x0C10

Module 4 Interrupt Steering 5 - Strain Alert High 1

R/W

0x0C14

Module 4 Interrupt Steering 6 - Strain Alert High 2

R/W

0x0C18 to 0x0C64

Module 4 Interrupt Steering 7-26 - Reserved

R/W

0x0C68

Module 4 Interrupt Steering 27 - Summary

R/W

0x0C6C to 0x0C7C

Module 4 Interrupt Steering 28-32 - Reserved

R/W

0x0D00

Module 5 Interrupt Vector 1 - BIT

R/W

0x0D04

Module 5 Interrupt Vector 2 - Reserved

R/W

0x0D08

Module 5 Interrupt Vector 3 - Strain Alert Low 1

R/W

0x0D0C

Module 5 Interrupt Vector 4 - Strain Alert Low 2

R/W

0x0D10

Module 5 Interrupt Vector 5 - Strain Alert High 1

R/W

0x0D14

Module 5 Interrupt Vector 6 - Strain Alert High 2

R/W

0x0D18 to 0x0D64

Module 5 Interrupt Vector 7-26 - Reserved

R/W

0x0D68

Module 5 Interrupt Vector 27 - Summary

R/W

0x0D6C to 0x0D7C

Module 5 Interrupt Vector 28-32 - Reserved

R/W

0x0E00

Module 5 Interrupt Steering 1 - BIT

R/W

0x0E04

Module 5 Interrupt Steering 2 - Reserved

R/W

0x0E08

Module 5 Interrupt Steering 3 - Strain Alert Low 1

R/W

0x0E0C

Module 5 Interrupt Steering 4 - Strain Alert Low 2

R/W

0x0E10

Module 5 Interrupt Steering 5 - Strain Alert High 1

R/W

0x0E14

Module 5 Interrupt Steering 6 - Strain Alert High 2

R/W

0x0E18 to 0x0E64

Module 5 Interrupt Steering 7-26 - Reserved

R/W

0x0E68

Module 5 Interrupt Steering 27 - Summary

R/W

0x0E6C to 0x0E7C

Module 5 Interrupt Steering 28-32 - Reserved

R/W

0x0F00

Module 6 Interrupt Vector 1 - BIT

R/W

0x0F04

Module 6 Interrupt Vector 2 - Reserved

R/W

0x0F08

Module 6 Interrupt Vector 3 - Strain Alert Low 1

R/W

0x0F0C

Module 6 Interrupt Vector 4 - Strain Alert Low 2

R/W

0x0F10

Module 6 Interrupt Vector 5 - Strain Alert High 1

R/W

0x0F14

Module 6 Interrupt Vector 6 - Strain Alert High 2

R/W

0x0F18 to 0x0F64

Module 6 Interrupt Vector 7-26 - Reserved

R/W

0x0F68

Module 6 Interrupt Vector 27 - Summary

R/W

0x0F6C to 0x0F7C

Module 6 Interrupt Vector 28-32 - Reserved

R/W

0x1000

Module 6 Interrupt Steering 1 - BIT

R/W

0x1004

Module 6 Interrupt Steering 2 - Reserved

R/W

0x1008

Module 6 Interrupt Steering 3 - Strain Alert Low 1

R/W

0x100C

Module 6 Interrupt Steering 4 - Strain Alert Low 2

R/W

0x1010

Module 6 Interrupt Steering 5 - Strain Alert High 1

R/W

0x1014

Module 6 Interrupt Steering 6 - Strain Alert High 2

R/W

0x1018 to 0x1064

Module 6 Interrupt Steering 7-26 - Reserved

R/W

0x1068

Module 6 Interrupt Steering 27 - Summary

R/W

0x106C to 0x107C

Module 6 Interrupt Steering 28-32 - Reserved

R/W

APPENDIX: PIN-OUT DETAILS

Pin-out details (for reference) are shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Motherboard Operational Manuals.

Module Signal (Ref Only)

Strain Gauge (SG1)

DATIO1

BRG-H-CH1

DATIO2

BRG-L-CH1

DATIO3

DRV-H-SNS-CH1

DATIO4

DRV-L-SNS-CH1

DATIO5

DRV-H-CH1

DATIO6

DRV-L-CH1

DATIO7

BRG-H-CH2

DATIO8

BRG-L-CH2

DATIO9

DRV-H-SNS-CH2

DATIO10

DRV-L-SNS-CH2

DATIO11

DRV-H-CH2

DATIO12

DRV-L-CH2

DATIO13

BRG-H-CH3

DATIO14

BRG-L-CH3

DATIO15

DRV-H-SNS-CH3

DATIO16

DRV-L-SNS-CH3

DATIO17

DRV-H-CH3

DATIO18

DRV-L-CH3

DATIO19

BRG-H-CH4

DATIO20

BRG-L-CH4

DATIO21

DRV-H-SNS-CH4

DATIO22

DRV-L-SNS-CH4

DATIO23

DRV-H-CH4

DATIO24

DRV-L-CH4

DATIO25

BRG-L-COMP-CH1

DATIO26

DATIO27

BRG-L-COMP-CH2

DATIO28

DATIO29

BRG-L-COMP-CH3

DATIO30

DATIO31

BRG-L-COMP-CH4

DATIO32

DATIO33

DATIO34

DATIO35

DATIO36

DATIO37

DATIO38

DATIO39

DATIO40

N/A

STATUS AND INTERRUPTS

Status registers indicate the detection of faults or events. The status registers can be channel bit-mapped or event bit-mapped. An example of a channel bit-mapped register is the BIT status register, and an example of an event bit-mapped register is the FIFO status register.

For those status registers that allow interrupts to be generated upon the detection of the fault or the event, there are four registers associated with each status: Dynamic, Latched, Interrupt Enabled, and Set Edge/Level Interrupt.

Dynamic Status: The Dynamic Status register indicates the current condition of the fault or the event. If the fault or the event is momentary, the contents in this register will be clear when the fault or the event goes away. The Dynamic Status register can be polled, however, if the fault or the event is sporadic, it is possible for the indication of the fault or the event to be missed.

Latched Status: The Latched Status register indicates whether the fault or the event has occurred and keeps the state until it is cleared by the user. Reading the Latched Status register is a better alternative to polling the Dynamic Status register because the contents of this register will not clear until the user commands to clear the specific bit(s) associated with the fault or the event in the Latched Status register. Once the status register has been read, the act of writing a 1 back to the applicable status register to any specific bit (channel/event) location will “clear” the bit (set the bit to 0). When clearing the channel/event bits, it is strongly recommended to write back the same bit pattern as read from the Latched Status register. For example, if the channel bit-mapped Latched Status register contains the value 0x0000 0005, which indicates fault/event detection on channel 1 and 3, write the value 0x0000 0005 to the Latched Status register to clear the fault/event status for channel 1 and 3. Writing a “1” to other channels that are not set (example 0x0000 000F) may result in incorrectly “clearing” incoming faults/events for those channels (example, channel 2 and 4).

Interrupt Enable: If interrupts are preferred upon the detection of a fault or an event, enable the specific channel/event interrupt in the Interrupt Enable register. The bits in Interrupt Enable register map to the same bits in the Latched Status register. When a fault or event occurs, an interrupt will be fired. Subsequent interrupts will not trigger until the application acknowledges the fired interrupt by clearing the associated channel/event bit in the Latched Status register. If the interruptible condition is still persistent after clearing the bit, this may retrigger the interrupt depending on the Edge/Level setting.

Set Edge/Level Interrupt: When interrupts are enabled, the condition on retriggering the interrupt after the Latch Register is “cleared” can be specified as “edge” triggered or “level” triggered. Note, the Edge/Level Trigger also affects how the Latched Register value is adjusted after it is “cleared” (see below).

  • Edge triggered: An interrupt will be retriggered when the Latched Status register change from low (0) to high (1) state. Uses for edgetriggered interrupts would include transition detections (Low-to-High transitions, High-to-Low transitions) or fault detections. After “clearing” an interrupt, another interrupt will not occur until the next transition or the re-occurrence of the fault again.

  • Level triggered: An interrupt will be generated when the Latched Status register remains at the high (1) state. Level-triggered interrupts are used to indicate that something needs attention.

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed with a unique number/identifier defined by the user such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Interrupt Trigger Types

In most applications, limiting the number of interrupts generated is preferred as interrupts are costly, thus choosing the correct Edge/Level interrupt trigger to use is important.

Example 1: Fault detection

This example illustrates interrupt considerations when detecting a fault like an “open” on a line. When an “open” is detected, the system will receive an interrupt. If the “open” on the line is persistent and the trigger is set to “edge”, upon “clearing” the interrupt, the system will not regenerate another interrupt. If, instead, the trigger is set to “level”, upon “clearing” the interrupt, the system will re-generate another interrupt. Thus, in this case, it will be better to set the trigger type to “edge”.

Example 2: Threshold detection

This example illustrates interrupt considerations when detecting an event like reaching or exceeding the “high watermark” threshold value. In a communication device, when the number of elements received in the FIFO reaches the high-watermark threshold, an interrupt will be generated. Normally, the application would read the count of the number of elements in the FIFO and read this number of elements from the FIFO. After reading the FIFO data, the application would “clear” the interrupt. If the trigger type is set to “edge”, another interrupt will be generated only if the number of elements in FIFO goes below the “high watermark” after the “clearing” the interrupt and then fills up to reach the “high watermark” threshold value. Since receiving communication data is inherently asynchronous, it is possible that data can continue to fill the FIFO as the application is pulling data off the FIFO. If, at the time the interrupt is “cleared”, the number of elements in the FIFO is at or above the “high watermark”, no interrupts will be generated. In this case, it will be better to set the trigger type to “level”, as the purpose here is to make sure that the FIFO is serviced when the number of elements exceeds the high watermark threshold value. Thus, upon “clearing” the interrupt, if the number of elements in the FIFO is at or above the “high watermark” threshold value, another interrupt will be generated indicating that the FIFO needs to be serviced.

Dynamic and Latched Status Registers Examples

The examples in this section illustrate the differences in behavior of the Dynamic Status and Latched Status registers as well as the differences in behavior of Edge/Level Trigger when the Latched Status register is cleared.

Status and Interrupts Fig1

Figure 1. Example of Module’s Channel-Mapped Dynamic and Latched Status States

No Clearing of Latched Status

Clearing of Latched Status (Edge-Triggered)

Clearing of Latched Status (Level-Triggered)

Time

Dynamic Status

Latched Status

Action

Latched Status

Action

Latched

T0

0x0

0x0

Read Latched Register

0x0

Read Latched Register

0x0

T1

0x1

0x1

Read Latched Register

0x1

0x1

Write 0x1 to Latched Register

Write 0x1 to Latched Register

0x0

0x1

T2

0x0

0x1

Read Latched Register

0x0

Read Latched Register

0x1

Write 0x1 to Latched Register

0x0

T3

0x2

0x3

Read Latched Register

0x2

Read Latched Register

0x2

Write 0x2 to Latched Register

Write 0x2 to Latched Register

0x0

0x2

T4

0x2

0x3

Read Latched Register

0x1

Read Latched Register

0x3

Write 0x1 to Latched Register

Write 0x3 to Latched Register

0x0

0x2

T5

0xC

0xF

Read Latched Register

0xC

Read Latched Register

0xE

Write 0xC to Latched Register

Write 0xE to Latched Register

0x0

0xC

T6

0xC

0xF

Read Latched Register

0x0

Read Latched

0xC

Write 0xC to Latched Register

0xC

T7

0x4

0xF

Read Latched Register

0x0

Read Latched Register

0xC

Write 0xC to Latched Register

0x4

T8

0x4

0xF

Read Latched Register

0x0

Read Latched Register

0x4

Interrupt Examples

The examples in this section illustrate the interrupt behavior with Edge/Level Trigger.

Status and Interrupts Fig2

Figure 2. Illustration of Latched Status State for Module with 4-Channels with Interrupt Enabled

Time

Latched Status (Edge-Triggered – Clear Multi-Channel)

Latched Status (Edge-Triggered – Clear Single Channel)

Latched Status (Level-Triggered – Clear Multi-Channel)

Action

Latched

Action

Latched

Action

Latched

T1 (Int 1)

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Write 0x1 to Latched Register

Write 0x1 to Latched Register

Write 0x1 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear until T2.

0x1

T3 (Int 2)

Interrupt Generated Read Latched Registers

0x2

Interrupt Generated Read Latched Registers

0x2

Interrupt Generated Read Latched Registers

0x2

Write 0x2 to Latched Register

Write 0x2 to Latched Register

Write 0x2 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.

0x2

T4 (Int 3)

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x3

Write 0x1 to Latched Register

Write 0x1 to Latched Register

Write 0x3 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x3 is reported in Latched Register until T5.

0x3

Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.

0x2

T6 (Int 4)

Interrupt Generated Read Latched Registers

0xC

Interrupt Generated Read Latched Registers

0xC

Interrupt Generated Read Latched Registers

0xE

Write 0xC to Latched Register

Write 0x4 to Latched Register

Write 0xE to Latched Register

0x0

Interrupt re-triggers Write 0x8 to Latched Register

0x8

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xE is reported in Latched Register until T7.

0xE

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xC is reported in Latched Register until T8.

0xC

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x4 is reported in Latched Register always.

0x4

MODULE COMMON REGISTERS

The registers described in this document are common to all NAI Generation 5 modules.

Module Information Registers

The registers in this section provide module information such as firmware revisions, capabilities and unique serial number information.

FPGA Version Registers

The FPGA firmware version registers include registers that contain the Revision, Compile Timestamp, SerDes Revision, Template Revision and Zynq Block Revision information.

FPGA Revision

Function: FPGA firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 13. FPGA Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Compile Timestamp

Function: Compile Timestamp for the FPGA firmware.

Type: unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the compile timestamp of the board’s FPGA

Operational Settings: The 32-bit value represents the Day, Month, Year, Hour, Minutes and Seconds as formatted in the table:

Table 14. FPGA Compile Timestamp

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

day (5-bits)

month (4-bits)

year (6-bits)

hr

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

hour (5-bits)

minutes (6-bits)

seconds (6-bits)

FPGA SerDes Revision

Function: FPGA SerDes revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the SerDes revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 15. FPGA SerDes Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Template Revision

Function: FPGA Template revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the template revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 16. FPGA Template Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Zynq Block Revision

Function: FPGA Zynq Block revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Zynq block revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 17. FPGA Zynq Block Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Bare Metal Version Registers

The Bare Metal firmware version registers include registers that contain the Revision and Compile Time information.

Bare Metal Revision

Function: Bare Metal firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s Bare Metal

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 18. Bare Metal Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Bare Metal Compile Time

Function: Provides an ASCII representation of the Date/Time for the Bare Metal compile time.

Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the ASCII representation of the compile time of the board’s Bare Metal

Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time. The hexadecimal values in the field below represent: May 17 2019 at 15:38:32

Table 19. Bare Metal Compile Time (Note: little-endian order of ASCII values)

Word 1 (Ex. 0x2079614D)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Month ('y' - 0x79)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Month ('a' - 0x61)

Month ('M' - 0x4D)

Word 2 (Ex. 0x32203731)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Year ('2' - 0x32)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Day ('7' - 0x37)

Day ('1' - 0x31)

Word 3 (Ex. 0x20393130)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Year ('9' - 0x39)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year ('1' - 0x31)

Year ('0' - 0x30)

Word 4 (Ex. 0x31207461)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Hour ('1' - 0x31)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x74)

't' (0x61)

Word 5 (Ex. 0x38333A35)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minute ('8' - 0x38)

Minute ('3' - 0x33)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

':' (0x3A)

Hour ('5' - 0x35)

Word 6 (Ex. 0x0032333A)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

NULL (0x00)

Seconds ('2' - 0x32)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Seconds ('3' - 0x33)

':' (0x3A)

FSBL Version Registers

The FSBL version registers include registers that contain the Revision and Compile Time information for the First Stage Boot Loader (FSBL).

FSBL Revision

Function: FSBL firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s FSBL

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 20. FSBL Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FSBL Compile Time

Function: Provides an ASCII representation of the Date/Time for the FSBL compile time.

Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the ASCII representation of the Compile Time of the board’s FSBL

Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time.

The hexadecimal values in the field below represent: May 17 2019 at 15:38:32

Table 21. FSBL Compile Time (Note: little-endian order of ASCII values)

Word 1 (Ex. 0x2079614D)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Month ('y' - 0x79)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Month ('a' - 0x61)

Month ('M' - 0x4D)

Word 2 (Ex. 0x32203731)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Year ('2' - 0x32)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Day ('7' - 0x37)

Day ('1' - 0x31)

Word 3 (Ex. 0x20393130)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Year ('9' - 0x39)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year ('1' - 0x31)

Year ('0' - 0x30)

Word 4 (Ex. 0x31207461)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Hour ('1' - 0x31)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x74)

't' (0x61)

Word 5 (Ex. 0x38333A35)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minute ('8' - 0x38)

Minute ('3' - 0x33)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

':' (0x3A)

Hour ('5' - 0x35)

Word 6 (Ex. 0x0032333A)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

NULL (0x00)

Seconds ('2' - 0x32)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Seconds ('3' - 0x33)

':' (0x3A)

Module Serial Number Registers

The Module Serial Number registers include registers that contain the Serial Numbers for the Interface Board and the Functional Board of the module.

Interface Board Serial Number

Function: Unique 128-bit identifier used to identify the interface board.

Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Serial number of the interface board

Operational Settings: This register is for information purposes only.

Functional Board Serial Number

Function: Unique 128-bit identifier used to identify the functional board.

Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Serial number of the functional board

Operational Settings: This register is for information purposes only.

Module Capability

Function: Provides indication for whether or not the module can support the following: SerDes block reads, SerDes FIFO block reads, SerDes packing (combining two 16-bit values into one 32-bit value) and floating point representation. The purpose for block access and packing is to improve the performance of accessing larger amounts of data over the SerDes interface.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0107

Read/Write: R

Initialized Value: 0x0000 0107

Operational Settings: A “1” in the bit associated with the capability indicates that it is supported.

Table 22. Module Capability

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

Flt-Pt

0

0

0

0

0

Pack

FIFO Blk

Blk

Module Memory Map Revision

Function: Module Memory Map revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Module Memory Map Revision

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 23. Module Memory Map Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Module Measurement Registers

The registers in this section provide module temperature measurement information.

Temperature Readings Registers

The temperature registers provide the current, maximum (from power-up) and minimum (from power-up) Zynq and PCB temperatures.

Interface Board Current Temperature

Function: Measured PCB and Zynq Core temperatures on Interface Board.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB and Zynq core temperatures based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 202C, this represents PCB Temperature = 32° Celsius and Zynq Temperature = 44° Celsius.

Table 24. Interface Board Current Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Functional Board Current Temperature

Function: Measured PCB temperature on Functional Board.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0019, this represents PCB Temperature = 25° Celsius.

Table 25. Functional Board Current Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Interface Board Maximum Temperature

Function: Maximum PCB and Zynq Core temperatures on Interface Board since power-on.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the maximum measured PCB and Zynq core temperatures since power-on based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the maximum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 5569, this represents maximum PCB Temperature = 85° Celsius and maximum Zynq Temperature = 105° Celsius.

Table 26. Interface Board Maximum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Interface Board Minimum Temperature

Function: Minimum PCB and Zynq Core temperatures on Interface Board since power-on.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the minimum measured PCB and Zynq core temperatures since power-on based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the minimum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 D8E7, this represents minimum PCB Temperature = -40° Celsius and minimum Zynq Temperature = -25° Celsius.

Table 27. Interface Board Minimum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Functional Board Maximum Temperature

Function: Maximum PCB temperature on Functional Board since power-on.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0055, this represents PCB Temperature = 85° Celsius.

Table 28. Functional Board Maximum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Functional Board Minimum Temperature

Function: Minimum PCB temperature on Functional Board since power-on.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 00D8, this represents PCB Temperature = -40° Celsius.

Table 29. Functional Board Minimum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Higher Precision Temperature Readings Registers

These registers provide higher precision readings of the current Zynq and PCB temperatures.

Higher Precision Zynq Core Temperature

Function: Higher precision measured Zynq Core temperature on Interface Board.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Zynq Core temperature on Interface Board

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x002B 0271, this represents Zynq Core Temperature = 43.625° Celsius, and value 0xFFF6 0177 represents -10.375° Celsius.

Table 30. Higher Precision Zynq Core Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Interface PCB Temperature

Function: Higher precision measured Interface PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Interface PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x0020 007D, this represents Interface PCB Temperature = 32.125° Celsius, and value 0xFFE8 036B represents -24.875° Celsius.

Table 31. Higher Precision Interface PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Functional PCB Temperature

Function: Higher precision measured Functional PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Functional PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/100 of degree Celsius. For example, if the register contains the value 0x0018 004B, this represents Functional PCB Temperature = 24.75° Celsius, and value 0xFFD9 0019 represents -39.25° Celsius.

Table 32. Higher Precision Functional PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Module Health Monitoring Registers

The registers in this section provide module temperature measurement information. If the temperature measurements reaches the Lower Critical or Upper Critical conditions, the module will automatically reset itself to prevent damage to the hardware.

Module Sensor Summary Status

Function: The corresponding sensor bit is set if the sensor has crossed any of its thresholds.

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: This register provides a summary for module sensors. When the corresponding sensor bit is set, the Sensor Threshold Status register for that sensor will indicate the threshold condition that triggered the event.

Table 33. Module Sensor Summary Status

Bit(s)

Sensor

D31:D6

Reserved

D5

Functional Board PCB Temperature

D4

Interface Board PCB Temperature

D3:D0

Reserved

Module Sensor Registers

The registers listed in this section apply to each module sensor listed for the Module Sensor Summary Status register. Each individual sensor register provides a group of registers for monitoring module temperatures readings. From these registers, a user can read the current temperature of the sensor in addition to the minimum and maximum temperature readings since power-up. Upper and lower critical/warning temperature thresholds can be set and monitored from these registers. When a programmed temperature threshold is crossed, the Sensor Threshold Status register will set the corresponding bit for that threshold. The figure below shows the functionality of this group of registers when accessing the Interface Board PCB Temperature sensor as an example.

Module Sensor Registers
Sensor Threshold Status

Function: Reflects which threshold has been crossed

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: The associated bit is set when the sensor reading exceed the corresponding threshold settings.

Table 34. Sensor Threshold Status

Bit(s)

Description

D31:D4

Reserved

D3

Exceeded Upper Critical Threshold

D2

Exceeded Upper Warning Threshold

D1

Exceeded Lower Critical Threshold

D0

Exceeded Lower Warning Threshold

Sensor Current Reading

Function: Reflects current reading of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents current sensor reading as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Minimum Reading

Function: Reflects minimum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents minimum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Maximum Reading

Function: Reflects maximum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents maximum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Lower Warning Threshold

Function: Reflects lower warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC220 0000 represents temperature = -40.0° Celsius.

Sensor Lower Critical Threshold

Function: Reflects lower critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC25C 0000 represents temperature = -55.0° Celsius.

Sensor Upper Warning Threshold

Function: Reflects upper warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42AA 0000 represents temperature = 85.0° Celsius.

Sensor Upper Critical Threshold

Function: Reflects upper critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42FA 0000 represents temperature = 125.0° Celsius.

FUNCTION REGISTER MAP

Key

Bold Underline

= Measurement/Status/Board Information

Bold Italic

= Configuration/Control

Module Information Registers

0x003C

FPGA Revision

R

0x0030

FPGA Compile Timestamp

R

0x0034

FPGA SerDes Revision

R

0x0038

FPGA Template Revision

R

0x0040

FPGA Zynq Block Revision

R

0x0074

Bare Metal Revision

R

0x0080

Bare Metal Compile Time (Bit 0-31)

R

0x0084

Bare Metal Compile Time (Bit 32-63)

R

0x0088

Bare Metal Compile Time (Bit 64-95)

R

0x008C

Bare Metal Compile Time (Bit 96-127)

R

0x0090

Bare Metal Compile Time (Bit 128-159)

R

0x0094

Bare Metal Compile Time (Bit 160-191)

R

0x007C

FSBL Revision

R

0x00B0

FSBL Compile Time (Bit 0-31)

R

0x00B4

FSBL Compile Time (Bit 32-63)

R

0x00B8

FSBL Compile Time (Bit 64-95)

R

0x00BC

FSBL Compile Time (Bit 96-127)

R

0x00C0

FSBL Compile Time (Bit 128-159)

R

0x00C4

FSBL Compile Time (Bit 160-191)

R

0x0000

Interface Board Serial Number (Bit 0-31)

R

0x0004

Interface Board Serial Number (Bit 32-63)

R

0x0008

Interface Board Serial Number (Bit 64-95)

R

0x000C

Interface Board Serial Number (Bit 96-127)

R

0x0010

Functional Board Serial Number (Bit 0-31)

R

0x0014

Functional Board Serial Number (Bit 32-63)

R

0x0018

Functional Board Serial Number (Bit 64-95)

R

0x001C

Functional Board Serial Number (Bit 96-127)

R

0x0070

Module Capability

R

0x01FC

Module Memory Map Revision

R

Module Measurement Registers

0x0200

Interface Board PCB/Zynq Current Temperature

R

0x0208

Functional Board PCB Current Temperature

R

0x0218

Interface Board PCB/Zynq Max Temperature

R

0x0228

Interface Board PCB/Zynq Min Temperature

R

0x0218

Functional Board PCB Max Temperature

R

0x0228

Functional Board PCB Min Temperature

R

0x02C0

Higher Precision Zynq Core Temperature

R

0x02C4

Higher Precision Interface PCB Temperature

R

0x02E0

Higher Precision Functional PCB Temperature

R

Module Health Monitoring Registers

0x07F8

Module Sensor Summary Status

R

Module Sensor Registers Memory Map

Revision History

Module Manual - SG1 Revision History

Revision

Revision Date

Description

C

2022-10-11

EC0 C09714, transition to docbuilder format. Pg.5 thru 7, changed "Delta-Sigma" to "Sigma-Delta". Pg.6, remove FIR filter mode reference from Output Data Rate. Pg.7, added Status and Interrupts paragraph. Pg.13, changed Reset Min & Max Strain from R/W to W. Added Appendix: Pin-Out Details.

Module Manual - Status and Interrupts Revision History

Revision

Revision Date

Description

C

2021-11-30

C08896; Transition manual to docbuilder format - no technical info change.

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients’ time-to-mission with a unique approach based on a Configurable Open Systems Architecture™ (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

Application Notes

Calibration and Repairs

Call Us

(631) 567-1100

Help Bot

X