Integrator Resources

The official home for NAI Support

Not sure where to start? Try Quick Start Guide or ask a question below!

Toggle Components with Visual Button
JavaScript Form Processing

Combined Analog-Digital Function Module

CME, CMF

Analog-to-Digital & Digital-to-Analog Combination Function Module

CME-CMF Combination Modules Analog-to-Digital Function Modules Combination Module: 8-Ch. A/D (CME = ±10 V, CMF = ±100 V) and 8-Ch. D/A (±10.0 V @ 10 mA)

The CME/CMF smart function modules provide a combined function alternative which mitigates SWaP-C (Size, Weight, Power, & Cost) system integration and configuration challenges. The CME/CMF functions essentially combine two of NAI’s popular functions onto a single-slot function module:

Analog-to-Digital (A/D) I/O Interface : The CME/CMF smart functions provide an Analog-to-Digital (A/D) I/O Interface (like the ADE/ADF smart function modules) with eight (8) independent 16-bit Successive Approximation Register (SAR) A/D input channels which support a maximum input voltage range of ±10 V (for CME) or ±100 V (for CMF).

Digital-to-Analog (D/A) I/O Interface: The CME/CMF smart functions provide a Digital-to-Analog (D/A) I/O Interface (like the DA2 smart function module) with eight (8) independent 16-bit D/A output channels which offers ±10 VDC output with a maximum current of 10 mA.

By integrating these functionalities into a single module, the CME/CMF streamlines system architecture, enhancing efficiency and reducing complexity in various system applications.

CME CMF Img01

Features

Analog-to-Digital (A/D) I/O Features

Number of Channels: 8

ADC Type/Architecture: SAR/Individual

Key Characteristics Range (max): ±10 V (CME); ±100 V (CMF)

Field programmable input range/polarity for each channel

Fixed, second-order, anti-aliasing input filter & digital,

secondorder IIR and low-pass output filter equipped on each channel Continuous background Built-In-Test (BIT) Extended A/D FIFO buffering capabilities for enhanced storage and management of incoming signal samples

Digital-to-Analog (D/A) I/O Features

Number of Channels: 8

±10 VDC output with a maximum current of 10 mA

High-quality 16-bit/channel D/A conversion Continuous

background BIT for comprehensive system diagnostics

Extended D/A output FIFO buffering capabilities for efficient signal processing and management

Specifications

Analog-to-Digital (A/D) I/O Interface

see below

Type/ID

CME: (Voltage Input Only) maximum input range: ±10V; CMF: (Voltage Input Only) maximum input range: ±100V

Resolution

16-bit SAR A/D converters. Simultaneous sampling.

Input Format

CME, CMF: Differential voltage (may be used as single-ended by grounding one input). Note: CME Ch. 8-Lo is always strapped to module ISO-GND for CMRP (Common Mode Reference Point).

Input Scaling

Eight (8) bipolar or unipolar channels (voltage only). Programmable, per channel, as Full Scale (FS) range inputs where range is -FS to +FS or 0 to FS. CME: 10.00, 5.00, 2.50, 1.25 or 0.625 volts; CMF: 100.0, 50.0, 25.0, 12.5 or 6.25 volts. The ability to set lower voltages for FS assures the utilization of the full resolution.

Overvoltage Protection

CME: No damage up to 25.4 V continuous, 33 V momentary (to 20 μs); CMF: 286 V continuous

Open Input Sense

This module will sense and report unconnected inputs (CME only) Input Impedance CME: 10 MΩ min. / 20 MΩ (Differential); CMF: 205 kΩ min. / 416 kΩ ( kΩ (Differential)

INL (Linearity)

0.05% FS range over temperature

Gain Error

±0.1% FS range (CME, CMF)

Offset Error

Greater of ±0.04% FS range or ±5 mV (CME, CMF)

Sampling Rate (Programmable)

200 kSPS maximum (decimation at slower sample rate < 100 kHz, 1 kHz minimum)

Data Buffering/Triggering

Independent FIFO sample capture with programmable options (1M x 32-bit data elements per channel). See Operations Manual for details.

Acquisition/Conversion Time

5.5 μs at 200 kHz sampling rate. See manual for conversion time at lower sample rates.

Programmable Filter

Each channel incorporates a fixed second order anti-aliasing filter (30 kHz bandwidth) and a post filter that has a digitally adjustable -3 dB break point programmable up to 90 kHz.

Common Mode Rejection

CME: 76 dB min. at 60 Hz. Roll off to 36 dB min. at 10 kHz; CMF: 90 dB min. at 60 Hz. Roll off to 50 dB min. at 10 kHz

Signal-to-Noise Ratio (SNR)

Minimum of 65 dB

Common Mode Voltage

CME: Signal voltage plus Common mode voltage is 10.5 volts; CMF: Signal voltage plus Common mode voltage is 270 volts. Note: A/D differential inputs must not “float”. Input source must have return path to CMRP (CME/CMF=CH 8-Lo)

Output Logic

Bipolar output in two’s complement. Bipolar output range from FFFF 8000 max. negative; 0000 7FFF is max. positive (FS). Unipolar output range from 0 to 0000 FFFF (FS) (Voltage Ranges only)

Digital-to-Analog (D/A) I/O Interface

see below

Resolution

16-bit/channel for voltage command modes.

Output Format

Single-ended

Output Range

±10 VDC, ±5 VDC, ±2.5 VDC, 0 to 10 VDC, 0 to 5 VDC; range programmable for each channel; 10 mA max per channel.

Output and Ground Impedance

< 1.5 Ω for each output

System Protection

Output is set to open circuit at reset or power on

Linearity Error

±0.10% FS range (FSR) over temperature

Offset Error

±3 mV

Gain Error

±0.10% FSR ± 0.02% x (maximum current in load (mA)), per channel. Example: The channel is expected to operate @ 2.5 mA maximum, therefore the effective gain error calculates to: (±0.10%) ± (0.02% x 2.5) = ±0.15% FSR

Settling Time

15 µs typical (25 µs maximum)

Data Buffer

FIFO, 1 M x 8 channels elements deep. See Operations Manual for functional details.

Load

Can drive a capacitive load of 0.1 μF, 10 mA/CH max. ±0.063% / FSR (V) x (the cumulative maximum ∆ current in the other 7 channel loads (mA)). Example: Four channels @ 2.5 mA & three channels @ 5 mA, max., @ ±10 V range, so, the error calculates to: (±0.063 / 20) * (±25) = ±0.08% maximum (@ FSR of ±10 V, this specific example). (Source or Sink). Short circuit protected. When current exceeds 10 mA for I2T calculation, that channel is set to open circuit and a flag is set.

Update Rate

400 µs (2.5 kHz max.) to 40 µs (25 kHz max.) per channel

General

see below

Power

5 VDC @ 500 mA (typ.) ±12VDC @ 185 mA (typ.), quiescent; Add 1 mA per 1 mA load per channel in ±12 VDC power supplies (for D/A function channels). Ground isolated (250 V minimum peak isolation)

Ground

Isolated (250 V minimum peak isolation) from system power/ground. A/D channel inputs are differential, referenced to isolated module AGND, or Common Mode Reference Point (CMRP): CH8(-) is strapped to AGND (CME only). D/A channel outputs are single ended, referenced to isolated module AGND (or GND-DA).

ESD Protection

Designed to meet the testing requirements of IEC 61000-4-2 (formerly 801-2) Level 2. (4 KV transient with a first peak current of 7.5 A and TRcR out to ~60 ns).

Weight

abc

Architected for Versatility

NAI’s Custom-On-Standard Architecture™ (COSA®) offers a choice of over 40 Intelligent I/O, communications, or Ethernet switch functions, providing the highest packaging density and greatest flexibility of any 3U SBC in the industry. Preexisting, fully-tested functions can be combined in an unlimited number of ways quickly and easily.

Board Support Package and Software Support

The 75PPC1 includes BSP and SDK support for Wind River® VxWorks®. In addition, software support kits are supplied, with source code and board-specific library I/O APIs, to facilitate system integration. Each I/O function has dedicated processing, unburdening the SBC from unnecessary data management overhead.

Background Built-In-Test (BIT)

BIT continuously monitors the status of all I/O during normal operations and is totally transparent to the user. SBC resources are not consumed while executing BIT routines. This simplifies maintenance, assures operational readiness, reduces life-cycle costs and— keeps your systems mission ready.

One-Source Efficiencies

Eliminate man-months of integration with a configured, field-proven system from NAI. Specification to deployment is a seamless experience as all design, state-of-the-art manufacturing, assembly and test are performed— by one trusted source. All facilities are in the U.S. and optimized for high-mix/low volume production runs and extended lifecycle support.

Product Lifecycle Management

From design-in to production, and beyond, NAI’s product lifecycle management strategy ensures the long-term availability of COTS products through configuration management, technology refresh, and obsolescence component purchase and storage.

INTRODUCTION

As a leading manufacturer of smart function modules, NAI offers over 100 different modules that cover a wide range of I/O, measurement and simulation, communications, Ethernet switch, and SBC functions. Our CME and CMF combination modules offers users the functionality of two COSA® smart function modules in one physical module. Based on NAI’s ADE or ADF and DA2 modules, the CME and CMF modules provides eight Analog-to-Digital (A/D) and eight Digital-to-Analog (D/A) channels in a single smart function module. This user manual is designed to help you get the most out of our CME or CMF smart function module.

CME-CMF Overview NAI’s CME and CMF modules offers a wide range of features designed to suit a variety of system requirements, including:

Analog-to-Digital (ADE/ADF Module-Type) Features

Eight (8) Channels of Analog-to-Digital I/O Interface: The module provides eight channels of independent 16-bit Successive Approximation Register (SAR) A/D input with a maximum input range of ±10 V for the CME, and ±100 V for the CMF.

Field Programmable Input Range and Polarity: The CME or CMF module allow the user to program the input range and polarity of each channel, providing seamless adjustment of the input parameters to match the requirements of the specific application. This feature enhances flexibility and simplifies integration into diverse systems.

Fixed, Second-Order, Anti-Aliasing Input Filter and Digital Second-Order IIR & Low-Pass Output Filter: The inclusion of a fixed, second-order, anti-aliasing input filter and a digital second-order IIR & low-pass output filter with programmable break frequency on each channel in the CME or CMF module ensures precise signal conditioning tailored to specific application requirements. This feature allows users to optimize filter settings for each channel according to the characteristics of the input signals, effectively reducing noise and distortion. By offering programmable break frequency, the module empowers users to fine-tune filter performance, ensuring optimal signal integrity and enhancing overall system accuracy and reliability.

Continuous Built-In Test (BIT): The module incorporates continuous BIT functionality, providing self-diagnostics and monitoring capabilities to ensure reliable operation and easy troubleshooting.

Extended A/D FIFO Buffering Capabilities: The extended A/D FIFO buffering capabilities of the CME or CMF module offer enhanced storage and management of incoming signal samples, ensuring efficient data handling. By incorporating programmable FIFO buffer thresholds, users can precisely control the flow of data, optimizing system performance and reducing latency. This feature is particularly beneficial in applications where real-time data processing is essential, providing seamless integration and reliable operation.

Digital-to-Analog (DA2 Module-Type) Features

Eight (8) Channels of Digital-to-Analog I/O Interface: The module provides eight channels of high-quality 16-bit D/A output offering an output range of ±10 V with a maximum current of 10 mA.

Continuous Built-In Test (BIT):

The module incorporates continuous BIT functionality, providing self-diagnostics and monitoring capabilities to ensure reliable operation and easy troubleshooting.

Extended D/A FIFO Buffering Capabilities:

The extended D/A output FIFO buffering capabilities of the CME (or CMF) module facilitate efficient signal processing and management, ensuring smooth operation and accurate output generation. By offering a buffering mechanism, the module can handle fluctuations in data flow, reducing the risk of data loss or distortion. This feature is particularly advantageous in applications requiring precise timing or synchronization, enhancing overall system performance and reliability.

ANALOG-TO-DIGITAL FUNCTION

The Analog-to-Digital communications function is similar to the standard ADE/ADF I/O function modules (ADE/ADF may be used as a reference/guide within the context of this document)

Principle of Operation Analog-to-Digital functions ADE and ADF are 8-Channel A/D functions that feature independent 16-bit Successive Approximation Register (SAR) A/Ds.

Module

ADE

ADF

Full Scale Range Inputs*

10.0 V

100.0 V

5.0 V

50 V

2.5 V

25 V

1.25 V

12.5 V

*Programmable, per channel, as Full Scale (FS) range inputs, where range is -FS to +FS or 0 to FS VDC. The ability to set lower voltages for FS assures the utilization of the maximum resolution.

The function(s) provide true simultaneous sampling A/D converters for all 8 channels with programmable full-scale range inputs. The A/D converters have programmable sample rates of up to 200 kHz. Additional features include FIFO sample data storage with trigger/capture options, IIR filtering, open-line (ADE function only) and over-voltage detection. Additional BIT capabilities include front end differential-amplifier malfunction detection (ADF function only).

Taking advantage of the fast and simultaneous sampling SAR A/D architecture, the function provides an effective A/D interface for applications requiring control loop integration and parallel data acquisition.

Built-In Test (BIT)/Diagnostic Capability

The AD function supports three types of built-in tests: Power-On, Continuous Background and Initiated. The results of these tests are logically OR’d together and stored in the BIT Dynamic Status and BIT Latched Status registers.

In addition to BIT, the AD function tests for loss of +12V and -12V power, and inter-FPGA data transfer errors between the Lattice FPGA and Xilinx FPGA. On the ADE function, the function tests for Open/Over-voltage conditions on the positive and negative connections. On the ADF function, the function continually tests the channel’s Front-end Amplifier to ensure it is working properly.

Power-On Self-Test (POST)/Power-On BIT (PBIT)/Start-Up (SBIT)

The PBIT test definition is defined at the Initiated BIT (IBIT). This is automatically performed on power-up, with the results posted. The module performs the power-on self-test on each channel automatically when power is applied and report the results in the BIT Status register when complete. After power-on, the user should check the Power-on BIT Complete register to ensure that POST/PBIT/SBIT test is complete before reading the BIT Dynamic Status and BIT Latched Status registers.

Continuous Background Built-In Test

The background Built-In-Test or Continuous BIT (CBIT) (“D2”) runs in the background where each channel is checked to a test accuracy of 0.2% FS. The testing is totally transparent to the user, requires no external programming, and has no effect on the operation of the module or card. For the ADE module, all channels are monitored for open input during the CBIT test.

The technique used by the CBIT test consists of an “add-2, subtract-1” counting scheme. The BIT counter is incremented by 2 when a BIT-fault is detected and decremented by 1 when there is no BIT fault detected and the BIT counter is greater than 0. When the BIT counter exceeds the (programmed) Background BIT Threshold value, the specific channel’s fault bit in the BIT status register will be set. Note, the interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a “count”, the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold “count” based on the BIT interval for that module. The “add-2, subtract-1” counting scheme effectively filters momentary or intermittent anomalies by allowing them to “come and go“ before a BIT fault status or indication is flagged. This prevents spurious faults from registering valid such as those caused by EMI and/or dirty power causing false BIT faults. Putting more “weight” on errors (“add-2”) and less “weight” on subsequent passing results (subtract-1) will result in a BIT failure indication even if a channel “oscillates” between a pass and fail state.

Initiated Built-In Test

The AD module supports two off-line Initiated Built-in Test, User Initiated BIT (UBIT) (“D0”) and Initiated BIT (IBIT) (“D3”).

UBIT test is used to check the card and interface. This test disconnects all A/D channels from the I/O and connects them across an internal D/A. The user controls test voltage by setting the desired voltage in the UBIT Test Data register. External reference voltage is not required. While UBIT test is enabled, the A/D Reading register will reflect the value entered for the test voltage. Note the units of the A/D Reading may represent voltage, current or engineering units depending on the mode specified by setting the Enable Floating Point Mode register.

IBIT test starts an initiated BIT test that disconnects all A/D’s from the I/O and then connects them across an internal stimulus. Each channel will be checked to a test accuracy of 0.2% FS and monitored for open inputs. The IBIT test cycle is completed within 20 seconds (depending on the sample rate) and results can be read from the BIT Status registers after the IBIT bit changes from 1 to 0 indicating that the IBIT test is complete.

The test can be enabled or disabled at any time by writing to the appropriate register.

A/D FIFO Buffering

The Analog-to-Digital function include A/D FIFO Buffering for greater control of the incoming signal (data) for analysis and display. When initialized and triggered, the A/D buffer will accept/store the data based on the same Sample Rate register combined with the number of active channels, or at a lower rate when utilizing the FIFO Skip Count feature. Programmable buffer sample thresholds can be utilized for data flow control.

Threshold and Saturation Programming

The Analog-to-Digital function provide registers that support threshold and saturation detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual” for the Principle of Operation description.

Status and Interrupts

The Analog-to-Digital function provide registers that indicate faults or events. Refer to “Status and Interrupts Module Manual” for the Principle of Operation description.

Module Common Registers

The Analog-to-Digital function include module common registers that provide access to module-level bare metal/FPGA revisions & compile times, unique serial number information, and temperature/voltage/current monitoring. Refer to “Module Common Registers Module Manual” for the detailed information.

Engineering Scaling Conversions

The A/D function Threshold, Saturation and Measurement registers can be programmed to be utilized as single precision floating point values (IEEE-754) or as 32-bit integer values.

It is very often necessary to convert a voltage or current reading into a more useful value such as PSI (Pounds per Square Inch), GPM (Gallons per Minute), LBS (pounds), etc. For example, when measuring force, it would be more beneficial to read the data as LBS (pounds) instead of volts. Other examples would be reading the data as PSI for pressure or GPM for flow. When the Enable Floating Point Mode register is set to 1, the values entered for the Floating Point Scale register and Floating Point Offset register will be used to convert the current or voltage measurement (i.e., A/D Reading and FIFO Buffer Data registers) to the associated engineering unit as follows:

	AD Data in Engineering Units (Floating Point) =
(AD Value (Volts/Current) * Floating Point Scale) + Floating Point Offset*

The purpose for providing this feature is to offload the processing that is normally performed by the mission processor to convert the integer values to engineering unit values.

When the Enable Floating Point Mode register is set to 1 (Floating Point Mode) the following registers are formatted as Single Precision Floating Point Value (IEEE-754):

A/D Reading

FIFO Buffer Data

Threshold Detect Level*

Upper and Lower Saturation*

*When the Enable Floating Point Mode register is set to 1, it is important that these registers are updated with the Single Precision Floating Point (IEEE-754) representation of the value for proper operation of the channel. Conversely, when the Enable Floating Point Mode register is set to 0, these registers must be updated with the Integer 32-bit representation of the value.

Note: when changing the Enable Floating Point Mode from Integer Mode to Floating Point Mode or vice versa, the following steps are followed to avoid faults from falsely being generated:

  1. Set the Enable Floating Point Mode register to the desired mode (Integer or Floating Point).

  2. The application waits for the Floating Point State register to match the value for the requested Floating Point Mode (Integer = 0, Floating Point = 1); this indicates that the module’s conversion of the register values and internal values is complete. Data registers will be converted to the units specified and can be read in that specified format.

Register Descriptions

The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, a description of the function and, in most cases, a data table.

A/D Measurement Registers

The A/D readings are normally in terms of voltage. When the Enable Floating Point Mode is enabled, the register value formatted as Single Precision Floating Point Value (IEEE-754), in addition the Floating Point Scale and Floating Point Offset will be applied to convert the voltage to engineering units.

A/D Reading

Function: The value represents voltage or engineering units depending on mode.

Type: signed binary word (32-bit) (Integer Mode) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Values are dependent on Polarity and Range settings for the channel

*Enable Floating Point Mode*: 0 (Integer Mode) Unipolar: 0x0000 0000 to
   0x0000 FFFF Bipolar (2's compliment.
   16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
     Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: NA

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

A/D Control Registers

The A/D control registers provide the ability to specify the polarity and range, the sample rate and the filter break frequency. The A/D Latch control register provides the ability to latch any of the A/D channels to the current sample capture.

Polarity & Range

Function: Sets input format for polarity and range for each channel. Note, if the Enable Floating Point Mode register is set to 1, the Floating Point Scale register must be set to the Range for direct voltage readout.

Type: unsigned binary word (32-bit) Data Range: See table below.

Read/Write: R/W

Initialized Value: 0x0000 0010 (ADE: ± 10 V, ADF: ± 100 V)

Operational Settings: For bipolar/unipolar selection, program D4 bit as 0 for unipolar and 1 for bipolar as shown in table below.

Polarity and Range

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

D

D

Range

Reg Value

ADE

ADF

0x04

0 - 0.625 V

0 - 6.25 V

0x03

0 - 1.25 V

0 - 12.5 V

0x02

0 - 2.5 V

0 – 25 V

0x01

0 – 5 V

0 – 50 V

0x00

0 – 10 V

0 – 100 V

0x14

± 0.625 V

± 6.25 V

0x13

± 1.25 V

± 12.5 V

0x12

± 2.5 V

± 25 V

0x11

± 5 V

± 50 V

0x10

± 10 V

± 100 V

Sample Rate

Function: Sets the desired sample rate for all channels.

Type: unsigned binary word (32-bit)

Data Range: 1000 – 200000 (0x0000 03E8 to 0x0003 0D40)

Read/Write: R/W

Initialized Value: 200000 (0x0003 0D40)

Operational Settings: LSB is 1Hz. Sample rate applies to all channels.

Filter Break Frequency

Function: The break frequency is the 3 dB point of a digital, second-order, IIR low-pass filter.

Type: unsigned binary word (32-bit)

Data Range: 0 Hz to 90 kHz (0x0000 0000 to 0x0001 5F90)

Read/Write: R/W

Initialized Value: 20 kHz (0x0000 4E20)

Operational Settings: LSB is 1 Hz. The break frequency must not be less than 1% of the clock rate frequency. (Example: For a clock rate frequency of 2 kHz, the Filter Break Frequency should be no less than 20 Hz). Set to 0 to disables filter.

Acquisition & Conversion Time

Acquisition & Conversion Time: Total time required to obtain digital result. It consists of acquisition, decimator group delay when engaged, and IIR filter.

CME CMF Img02

Acquisition & Conversion time will vary depending on the programmed sample rates. Expect a total delay of 5.5µs when sampling at 200kHz (max). Refer to the following chart for lower sample rates:

CME CMF Img03

Latch All A/D Channels

Function: Latches all A/D channels.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R/W

Initialized Value: 0

Operational Settings: Set to 1 to latch and to 0 to unlatch. Bit-mapped per channel.

Note: The channel’s A/D Reading register will maintain the same reading while the Latch A/D bit is set to 1. Sampling for the channel will resume for that channel only when the bit is set to 0.

Latch A/D Channel

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

A/D Test Registers

Three different tests, one on-line (CBIT) and two off-line (UBIT, IBIT), can be selected. External reference voltage is not required for any of these tests.

Test Enabled

Function: Sets bit to enable the associated Built-In Self-Test (BIST): IBIT, CBIT and UBIT.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R/W

Initialized Value: 0x4 (CBIT Test Enabled)

Operational Settings: BIT tests include an on-line (CBIT) test and two off-line (UBIT, IBIT) tests. Failures in the BIT test are reflected in the BIT Status registers for the corresponding channels that fail. In addition, an interrupt (if enabled in the BIT Interrupt Enable register) can be triggers when the BIT testing detects failures.

Test Enabled

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

IBIT Test D

CBIT Test 1

0

UBIT Test D

UBIT Test Data

Function: Specifies voltage to be applied for the A/D UBIT off-line test.

Type: signed binary word (32-bit)

Data Range: Voltage and Current values are dependent on Polarity and Range settings for the channel. Unipolar: 0x0000 to 0x0000 FFFF Bipolar (2’s compliment. 16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: LSB is dependent on the Range setting. Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

FIFO Registers

The FIFO registers are configurable for each channel. FIFO Buffer Data

Function: Available data in the FIFO buffer can be retrieved, one word at a time. (LSB for 16-bit word resolution is dependent on the Polarity and Range setting).

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode) Data Range: Enable Floating Point Mode: 0 (Integer Mode) Unipolar: 0x0000 0000 to 0x0000 FFFF Bipolar (2’s compliment. 16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF Enable Floating Point Mode: 1 (Floating Point Mode) Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

FIFO Word Count

Function: This is a counter that reports the number of 16-bit words stored in the FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R

Initialized Value: 0

Operational Settings: Every time a read operation is made from the A/D Data memory address, its corresponding Words in FIFO counter will be decremented by one. The maximum number of words that can be stored in the FIFO is 1 mega words.

FIFO Thresholds

The FIFO Almost Empty, FIFO Low Watermark, FIFO High Watermark, FIFO Almost Full and FIFO Buffer Size sets the threshold limits that are used to set the bits in the FIFO Status register.

FIFO Almost Empty

Function: The FIFO Almost Empty is used to set the limits for the “almost empty” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When the Words in FIFO counter is greater than or equal to the value stored in the FIFO Almost Empty register, the “almost empty” bit (D1) of the FIFO Status register will be set. When the Words in FIFO counter is less than the value stored in the register, the “almost empty” bit (D1) of the FIFO Status register will be reset.

FIFO Low Watermark

Function: The FIFO Low Watermark (low-threshold level) is used to set the limits for the “low watermark” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When the Words in FIFO counter is less than or equal to the value stored in the FIFO Low Watermark register, the “low watermark” bit (D2) of the FIFO Status register will be set. When the Words in FIFO counter is greater than the value stored in the register, the “low watermark” bit (D2) of the FIFO Status register will be reset.

FIFO High Watermark

Function: The FIFO High Watermark (high-threshold level) is used to set the limits for the “high watermark” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When the Words in FIFO counter is greater than or equal to the value stored in the FIFO High Watermark register, the “high watermark” bit (D3) of the FIFO Status register will be set. When the Words in FIFO counter is less than the value stored in the highthreshold, the “high watermark” bit (D3) of the FIFO Status register will be reset.

FIFO Almost Full

Function: The FIFO Almost Full is used to set the limits for the “almost full” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When the Words in FIFO counter is greater than or equal to the value stored in the FIFO Almost Full register, the “almost full” bit (D4) of the FIFO Status register will be set. When the Words in FIFO counter is less than the value stored in the register, the “almost full” bit (D4) of the FIFO Status register will be reset.

FIFO Buffer Size

Function: Sets the number of samples to be taken and placed into the FIFO when a trigger occurs.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x000F FFFF

Operational Settings: The size of each sample (number of words written to the FIFO per sample) is determined by the sample format described by the FIFO Buffer Control register. When the Words in FIFO counter reaches the FIFO Buffer Size, the “sample done” bit (D6) is set and no additional samples will be placed in the FIFO. When Words in FIFO counter is less than FIFO Buffer Size, the “sample done” bit (D6) will be reset.

Data Control

Function: Sets the format of the samples to be stored in the FIFO buffer which is determined by the bitmapped table.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0014

Read/Write: R/W

Initialized Value: 0

Operational Settings: The Time Stamp data format (D4) requires one word of storage space from the FIFO buffer. For example, if (D4) is set to 0 and the FIFO Buffer Size register is set to 1, a FIFO write will put one word of data in the FIFO memory space per sample and discard the timestamp. Since the maximum physical size of FIFO is 1M words for each channel, the value in the FIFO Buffer Size and Data Control registers could cause an overflow to the FIFO buffer. When an overflow condition occurs, any data that is not place in the FIFO will be lost.

D31-D5

Reserved. Set to 0

D4

Time Stamp. An integer counter that counts from 0 to 65,535 and wraps around when it overflows.

D3

Reserved. Set to 0

D2

Data Type. 0 = Raw (unfiltered); 1 = Filtered (post-programmable IIR).

D1

Reserved. Set to 0

D0

Reserved. Set to 0

FIFO Sample Delay

Function: Sets the number of delay samples before the actual FIFO data collection begins.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: The data collected during the delay period will be discarded.

FIFO Skip Count

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0 (No Skip Count (FIFO stores every sample))

Operational Settings: If the sample rate for a channel is 10 kHz, there would be a new sample every 100µs. By setting the FIFO skip count to 1, the FIFO will store a new sample every 200 µs, or at a 5 kHz rate.

Clear FIFO

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: N/A

Operational Settings: This resets the Words in FIFO to zero; Clear FIFO register does not clear data in the buffer. A read to the buffer data will give “aged” data. Write a 1 to reset the Words in FIFO for the channel.

D31-D1

Reserved. Set to 0

D0

Set to 1 to Clear FIFO (i.e. reset the Words in FIFO).

Clear FIFO

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

FIFO Trigger Control

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0x1FF

Read/Write: R/W

Initialized Value: 0 (Disable Trigger)

Operational Settings: For the current implementation, triggering of FIFO is by Software Trigger only. Hardware triggering will be implemented in a future release. Hardware triggering will be platform dependent based on pin-outs and I/O availability. See the tables that follow for the current and pending settings.

D8

Trigger Enable

0

Not Enabled / Stop Trigger

1

Enable Trigger

D[5..4]

Trigger Edge

0

RESERVED for Hardware Trigger (Positive Edge)

1

RESERVED for Hardware Trigger (Negative Edge)

2

RESERVED for Hardware Trigger (Either Edge)

3

Software Trigger

D[1..0]

Trigger Type

0

Continuous

1

Single Sample

2

X (Don’t care)

3

X (Don’t care)

D[8..0]

Summary Description

0x130

Store continuously once there is a Software Trigger.

0x131

Store single sample once there is a Software Trigger

0x0XX

Disable Trigger (will stop FIFO from storing data if continuously running)

FIFO Trigger Control

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

D

D

D

D

D

D

D

D

D

FIFO Software Trigger

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0 (Not Triggered)

Operational Settings: To use this operation, the FIFO Trigger Control register must be set up as described in the FIFO Trigger Control register. Write a 1 to trigger FIFO collection for all channels.

D31-D1

Reserved. Set to 0

D0

Set to 1 to start the FIFO data collection.

FIFO Software Trigger

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Threshold Detect Programming Registers

The Analog-to-Digital function provide registers that support threshold detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual” for the register descriptions.

Saturation Programming Registers

The Analog-to-Digital function provide registers that support saturation detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual” for the register descriptions.

Engineering Scaling Conversions Registers

The A/D Module Threshold, Saturation, and Measurement registers can be programmed to be utilized as a Single Precision Floating Point Value (IEEE-754) or as a 32-bit integer value.

Enable Floating Point Mode

Function: Sets all channels for floating point mode or integer module.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: R/W

Initialized Value: 0 (Integer mode)

Operational Settings: Set bit to 1 to enable Floating Point Mode and 0 for Integer Mode. Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

Enable Floating Point Mode

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Floating Point Offset

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

Floating Point Scale

Function: This register sets the floating point scale to multiply to the AD data.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

Floating Point State

Function: Indicates whether the module’s internal processing is converting the register values and internal values to the binary representation of the mode selected (Integer or Floating Point).

Type: unsigned binary word (32-bit)

Data Range: 0 to 1 Read/Write: R

Initialized Value: 0

Operational Settings: Indicates the whether the module registers are in Integer (0) or Floating Point Mode (1). When the Enable Floating Point Mode is modified, the application must wait until this register’s value matches the requested mode before changing the values of the configuration and control registers with the values in the units specified (Integer or Floating Point).

Floating Point State

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Background BIT Threshold Programming Registers

The Background BIT Threshold register provides the ability to specify the minimum time before the BIT fault is reported in the BIT Status registers. The BIT Clear Count register provides the ability to reset the BIT counter used in CBIT.

Background BIT Threshold

Function: Sets BIT Threshold value (in milliseconds) to use for all channels for BIT failure indication.

Type: unsigned binary word (32-bit)

Data Range: 1 ms to 65 seconds

Read/Write: R/W

Initialized Value: 5 ms

Operational Settings: The interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a “count”, the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold “count” based on the BIT interval for that module.

BIT Count Clear

Function: Resets the CBIT internal circuitry and count mechanism. Set the bit corresponding to the channel you want to clear.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: W

Initialized Value: 0

Operational Settings: Set bit to 1 for channel to resets the CBIT mechanisms. Bit is self-clearing.

NOTE: BIT Count Clear is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

BIT Clear Count

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

Module Common Registers

Refer to “Module Common Registers Module Manual” for the register descriptions.

Status and Interrupt Registers

The AD modules provide status registers for BIT, FIFO, Open/Over-Voltage, External Power Loss, Threshold Detect, Saturation, and Inter-FPGA Failure.

Channel Status Enable

Function: Determines whether to update the status for the channels. This feature can be used to “mask” status bits of unused channels in status registers that are bitmapped by channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF (Channel Status)

Read/Write: R/W

Initialized Value: 0x0000 FFFF

Operational Settings: When the bit corresponding to a given channel in the Channel Status Enable register is not enabled (0) the status will be masked and report “0” or “no failure”. This applies to all statuses that are bitmapped by channel (BIT Status, Open/Over-Voltage Status, and Front-end Amplifier Failure Status).

NOTE: Channel Status Enable is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

NOTE: Background BIT will continue to run even if the Channel Status Enable is set to ‘0'.

Channel Status Enable

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

BIT Status

There are four registers associated with the BIT Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. The BIT Status register will indicate an error when the voltage read is not within the error of the set value.

NOTE: BIT Status is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

BIT Dynamic Status BIT Latched Status BIT Interrupt Enable BIT Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

Function: Sets the corresponding bit associated with the channel’s BIT error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

BIT Diagnostic

Upon detection of a BIT error, the following registers provide additional information about the error:

Power-on BIT Error (Indicates a PBIT error that occurred on power-on. Bit will remain set until the BIT Count Clear register is written to. This register is OR’d into BIT status.)

Anti-Aliasing Filter Error (Indicates a common-mode range input error on the front-end voltage input circuitry. This register is OR’d into BIT status.)

Voltage Reading Accuracy Error (Indicates voltage reading accuracy outside of spec compared with redundant reading. This is the same as CBIT. This register is OR’d into BIT status.)

FIFO Status

There are four registers associated with the FIFO Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. D0-D6 is used to show the different conditions of the buffer.

Description

Configurable?

D0

Almost Full; 1 when FIFO Count >= “FIFO Almost Full” register Yes

D1

Almost Empty; 1 when FIFO Count ⇐ “FIFO Almost Empty” register Yes

D2

High Watermark; 1 when FIFO Count >= “FIFO High Watermark” register Yes

D3

Low Watermark; 1 when FIFO Count ⇐ “FIFO Low Watermark” register Yes

D4

Empty; 1 when FIFO Count = 0 No

D5

Full; 1 when FIFO Count = 1 Mega Words (0x000F FFFF) No

FIFO Dynamic Status FIFO Latched Status FIFO Interrupt Enable FIFO Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

D

D

D

D

D

D

D

D

Function: Sets the corresponding bit associated with the FIFO status type; there is a separate register for each channel.

Type: binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 007F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Note:

Shown below is an example of interrupts generated for the High Watermark.
As shown, the interrupt is generated as the FIFO count crosses the High
Watermark.
The interrupt will not be generated a second time until the count goes
below the watermark and then above it again.
CME CMF Img04

Open/Over-Voltage Status

There are four registers associated with the Open/Over-Voltage Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. These registers are only applicable to ADE function.

Note: Channel 8’s negative pin (IN_CH08-) on the I/O connector MUST be tied to ground for the open detection circuitry to function properly. Failure to make this connection to ground will cause intermittent open-detect behavior on all channels.

Note: both ends of any unused channels (Pos/Neg) should be tied to the channel 8 negative pin, referred to as the Common Mode Reference Point (CMRP; isolated from system power/ground). Tying only one end of a channel, while leaving the opposing end open, may cause Open Circuit Detection to deliver unwanted voltages to your channels in use.

Open/Over-Voltage Dynamic Status Open/Over-Voltage Latched Status Open/Over-Voltage Interrupt Enable Open/Over-Voltage Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Function: Sets the corresponding bit associated with the channel’s Open/Over-Voltage error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

External Power Loss Status

There are four registers associated with the External Power Loss Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

D0 = +12V External Power Loss

D1 = -12V External Power Loss

External Power Loss Dynamic Status External Power Loss Latched Status External Power Loss Interrupt Enable External Power Loss Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-12V

+12V

Function: Sets the corresponding bit associated with the channel’s External Power Loss error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0003

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt) Initialized Value: 0

Threshold Detect Status

The Analog-to-Digital function provide registers that support threshold detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual” for the register descriptions.

Saturation Status

The Analog-to-Digital function provide registers that support saturation detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual” for the register descriptions.

Front-End Amplifier Failure Status

There are four registers associated with the Front-end Amplifier Failure Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. These registers are only applicable to the ADF function.

Front-end Amplifier Failure Dynamic Status Front-end Amplifier Failure Latched Status Front-end Amplifier Failure Interrupt Enable Front-end Amplifier Failure Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Function: Sets the corresponding bit associated with the channel’s Front-end Amplifier Failure error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt) Initialized Value: 0

Inter-FPGA Failure Status

Data is periodically transferred between the Lattice FPGA and the Xilinx FPGA. A CRC value is calculated and verified with each data transfer. A CRC error flag is sent from the Lattice FPGA to the Xilinx FPGA if a CRC error is detected. The Xilinx FPGA contains a counter that will increase by two when a CRC error is flagged and decremented by one when there is no CRC error. If the counter reaches ten, the Xilinx FPGA will set the Inter-FPGA Failure status bit and shut down the isolated power supply. To recover from an Inter-FPGA Failure, the module needs to be reset and re-initialized.

There are four registers associated with the Inter-FPGA Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. 0 = Normal; 0xFFFF = Inter-FPGA Communication Failure. The status represents the status for all channels on the module.

NOTE: Inter-FPGA Failure Status is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

Inter-FPGA Failure Dynamic Status Inter-FPGA Failure Latched Status Inter-FPGA Failure Interrupt Enable Inter-FPGA Failure Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

Function: Sets the corresponding bit associated with the channel’s Inter-FPGA Failure error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Function Register Map

Key: Bold Italic = Configuration/Control Bold Underline = Measurement/Status

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e., write-1-to-clear, writing a “1” to a bit set to “1” will set the bit to “0).

  • Data is represented in Floating Point if Enable Floating Point Mode register is set to Floating Point Mode (1). ~ Data is always in Floating Point. == A/D Measurement Registers

0x1000

A/D Reading Ch 1**

R

0x1004

A/D Reading Ch 2**

R

0x1008

A/D Reading Ch 3**

R

0x100C

A/D Reading Ch 4**

R

0x1010

A/D Reading Ch 5**

R

0x1014

A/D Reading Ch 6**

R

0x1018

A/D Reading Ch 7**

R

0x101C

A/D Reading Ch 8**

R

A/D Control Registers

0x1080

Polarity & Range Ch 1

R/W

0x1084

Polarity & Range Ch 2

R/W

0x1088

Polarity & Range Ch 3

R/W

0x108C

Polarity & Range Ch 4

R/W

0x1090

Polarity & Range Ch 5

R/W

0x1094

Polarity & Range Ch 6

R/W

0x1098

Polarity & Range Ch 7

R/W

0x109C

Polarity & Range Ch 8

R/W

0x1100

Filter Break Frequency Ch 1

R/W

0x1104

Filter Break Frequency Ch 2

R/W

0x1108

Filter Break Frequency Ch 3

R/W

0x110C

Filter Break Frequency Ch 4

R/W

0x1110

Filter Break Frequency Ch 5

R/W

0x1114

Filter Break Frequency Ch 6

R/W

0x1118

Filter Break Frequency Ch 7

R/W

0x111C

Filter Break Frequency Ch 8

R/W

0x188C

Sample Rate

R/W

0x1880

Latch All A/D Channels

R/W

FIFO Registers

0x1180

FIFO Buffer Data Ch 1**

R

0x1184

FIFO Buffer Data Ch 2**

R

0x1188

FIFO Buffer Data Ch 3**

R

0x118C

FIFO Buffer Data Ch 4**

R

0x1190

FIFO Buffer Data Ch 5**

R

0x1194

FIFO Buffer Data Ch 6**

R

0x1198

FIFO Buffer Data Ch 7**

R

0x119C

FIFO Buffer Data Ch 8**

R

0x1200

FIFO Word Count Ch 1

R

0x1204

FIFO Word Count Ch 2

R

0x1208

FIFO Word Count Ch 3

R

0x120C

FIFO Word Count Ch 4

R

0x1210

FIFO Word Count Ch 5

R

0x1214

FIFO Word Count Ch 6

R

0x1218

FIFO Word Count Ch 7

R

0x121C

FIFO Word Count Ch 8

R

0x1480

FIFO Sample Delay Ch 1

R/W

0x1484

FIFO Sample Delay Ch 2

R/W

0x1488

FIFO Sample Delay Ch 3

R/W

0x148C

FIFO Sample Delay Ch 4

R/W

0x1490

FIFO Sample Delay Ch 5

R/W

0x1494

FIFO Sample Delay Ch 6

R/W

0x1498

FIFO Sample Delay Ch 7

R/W

0x149C

FIFO Sample Delay Ch 8

R/W

0x1580

FIFO Skip Count Ch 1

R/W

0x1584

FIFO Skip Count Ch 2

R/W

0x1588

FIFO Skip Count Ch 3

R/W

0x158C

FIFO Skip Count Ch 4

R/W

0x1590

FIFO Skip Count Ch 5

R/W

0x1594

FIFO Skip Count Ch 6

R/W

0x1598

FIFO Skip Count Ch 7

R/W

0x159C

FIFO Skip Count Ch 8

R/W

0x1600

Clear FIFO Ch 1

W

0x1604

Clear FIFO Ch 2

W

0x1608

Clear FIFO Ch 3

W

0x160C

Clear FIFO Ch 4

W

0x1610

Clear FIFO Ch 5

W

0x1614

Clear FIFO Ch 6

W

0x1618

Clear FIFO Ch 7

W

0x161C

Clear FIFO Ch 8

W

0x1680

Data Control Ch 1

R/W

0x1684

Data Control Ch 2

R/W

0x1688

Data Control Ch 3

R/W

0x168C

Data Control Ch 4

R/W

0x1690

Data Control Ch 5

R/W

0x1694

Data Control Ch 6

R/W

0x1698

Data Control Ch 7

R/W

0x169C

Data Control Ch 8

R/W

0x1884

FIFO Trigger Control

R/W

0x1888

FIFO Software Trigger

W

0x1280

FIFO Almost Empty Ch 1

R/W

0x1284

FIFO Almost Empty Ch 2

R/W

0x1288

FIFO Almost Empty Ch 3

R/W

0x128C

FIFO Almost Empty Ch 4

R/W

0x1290

FIFO Almost Empty Ch 5

R/W

0x1294

FIFO Almost Empty Ch 6

R/W

0x1298

FIFO Almost Empty Ch 7

R/W

0x129C

FIFO Almost Empty Ch 8

R/W

0x1380

FIFO Low Watermark Ch 1

R/W

0x1384

FIFO Low Watermark Ch 2

R/W

0x1388

FIFO Low Watermark Ch 3

R/W

0x138C

FIFO Low Watermark Ch 4

R/W

0x1390

FIFO Low Watermark Ch 5

R/W

0x1394

FIFO Low Watermark Ch 6

R/W

0x1398

FIFO Low Watermark Ch 7

R/W

0x139C

FIFO Low Watermark Ch 8

R/W

0x1300

FIFO Almost Full Ch 1

R/W

0x1304

FIFO Almost Full Ch 2

R/W

0x1308

FIFO Almost Full Ch 3

R/W

0x130C

FIFO Almost Full Ch 4

R/W

0x1310

FIFO Almost Full Ch 5

R/W

0x1314

FIFO Almost Full Ch 6

R/W

0x1318

FIFO Almost Full Ch 7

R/W

0x131C

FIFO Almost Full Ch 8

R/W

0x1400

FIFO High Watermark Ch 1

R/W

0x1404

FIFO High Watermark Ch 2

R/W

0x1408

FIFO High Watermark Ch 3

R/W

0x140C

FIFO High Watermark Ch 4

R/W

0x1410

FIFO High Watermark Ch 5

R/W

0x1414

FIFO High Watermark Ch 6

R/W

0x1418

FIFO High Watermark Ch 7

R/W

0x141C

FIFO High Watermark Ch 8

R/W

0x1500

FIFO Buffer Size Ch 1

R/W

0x1504

FIFO Buffer Size Ch 2

R/W

0x1508

FIFO Buffer Size Ch 3

R/W

0x150C

FIFO Buffer Size Ch 4

R/W

0x1510

FIFO Buffer Size Ch 5

R/W

0x1514

FIFO Buffer Size Ch 6

R/W

0x1518

FIFO Buffer Size Ch 7

R/W

0x151C

FIFO Buffer Size Ch 8

R/W

Threshold Detect Programming Registers

The Analog-to-Digital function provide registers that support threshold detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual” for the Threshold Detect Programming Function Register Map.

Saturation Programming Registers

The Analog-to-Digital function provide registers that support saturation detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual” for the Saturation Programming Function Register Map.

Engineering Scaling Conversions Registers

0x02B4

Enable Floating Point

R/W

0x0264

Floating Point State

R

0x1700

Floating Point Offset Ch 1~

R/W

0x1704

Floating Point Offset Ch 2~

R/W

0x1708

Floating Point Offset Ch 3~

R/W

0x170C

Floating Point Offset Ch 4~

R/W

0x1710

Floating Point Offset Ch 5~

R/W

0x1714

Floating Point Offset Ch 6~

R/W

0x1718

Floating Point Offset Ch 7~

R/W

0x171C

Floating Point Offset Ch 8~

R/W

0x1780

Floating Point Scale Ch 1~

R/W

0x1784

Floating Point Scale Ch 2~

R/W

0x1788

Floating Point Scale Ch 3~

R/W

0x178C

Floating Point Scale Ch 4~

R/W

0x1790

Floating Point Scale Ch 5~

R/W

0x1794

Floating Point Scale Ch 6~

R/W

0x1798

Floating Point Scale Ch 7~

R/W

0x179C

Floating Point Scale Ch 8~

R/W

Module Common Registers

Refer to “Module Common Registers Module Manual” for the Module Common Registers Function Register Map.

A/D Status Registers

0x02B0

Channel Status Enable

R/W

Bit Status

0x0800

Dynamic Status

R

0x0804

Latched Status*

R/W

0x0808

Interrupt Enable

R/W

0x080C

Set Edge/Level Interrupt

R/W

0x1804

Anti-Aliasing Filter Error

R

0x1808

Voltage Reading Accuracy Error

R

0x0248

Test Enabled

R/W

0x024C

Test CBIT Verify

R/W

0x0294

UBIT Polarity

R/W

0x0298

UBIT Test Data

R/W

0x02B8

Background BIT Threshold

R/W

0x02BC

BIT Count Clear

W

0x02AC

Power-on BIT Complete++

R

0x1800

Power-on BIT Error

R

After power-on, Power-on BIT Complete should be checked before reading the BIT Latched Status.

Open/Over-Voltage Status – ADE

0x08A0

Dynamic Status

R

0x08A4

Latched Status*

R/W

0x08A8

Interrupt Enable

R/W

0x08AC

Set Edge/Level Interrupt

R/W

External Power Loss Status

0x0970

Dynamic Status

R

0x0974

Latched Status*

R/W

0x0978

Interrupt Enable

R/W

0x097C

Set Edge/Level Interrupt

R/W

Threshold Detect Status

0x08B0

Dynamic Status

R

0x08B4

Latched Status*

R/W

0x08B8

Interrupt Enable

R/W

0x08BC

Set Edge/Level Interrupt

R/W

Note
The CME/CMF module uses these registers in lieu of the threshold status registers referenced in the “Analog-to-Digital Threshold and Saturation Programming Module Manual” Function Register Map.

Front-End Amplifier - ADF

0x08C0

Dynamic Status

R

0x08C4

Latched Status*

R/W

0x08C8

Interrupt Enable

R/W

0x08CC

Set Edge/Level Interrupt

R/W

Saturation Status

0x08D0

Dynamic Status

R

0x08D4

Latched Status*

R/W

0x08D8

Interrupt Enable

R/W

0x08DC

Set Edge/Level Interrupt

R/W

NOTE: The CME/CMF module uses these registers in lieu of the saturation status registers referenced in the “Analog-to-Digital Threshold and Saturation Programming Module Manual” Function Register Map.

Inter-FPGA Failure

0x09B0

Dynamic Status

R

0x09B4

Latched Status*

R/W

0x09B8

Interrupt Enable

R/W

0x09BC

Set Edge/Level Interrupt

R/W

FIFO Status

Ch 1

0x0810

Dynamic Status

R

0x0814

Latched Status*

R/W

0x0818

Interrupt Enable

R/W

0x081C

Set Edge/Level Interrupt

R/W

Ch 2

0x0820

Dynamic Status

R

0x0824

Latched Status*

R/W

0x0828

Interrupt Enable

R/W

0x082C

Set Edge/Level Interrupt

R/W

Ch 3

0x0830

Dynamic Status

R

0x0834

Latched Status*

R/W

0x0838

Interrupt Enable

R/W

0x083C

Set Edge/Level Interrupt

R/W

Ch 4

0x0840

Dynamic Status

R

0x0844

Latched Status*

R/W

0x0848

Interrupt Enable

R/W

0x084C

Set Edge/Level Interrupt

R/W

Ch 5

0x0850

Dynamic Status

R

0x0854

Latched Status*

R/W

0x0858

Interrupt Enable

R/W

0x085C

Set Edge/Level Interrupt

R/W

Ch 6

0x0860

Dynamic Status

R

0x0864

Latched Status*

R/W

0x0868

Interrupt Enable

R/W

0x086C

Set Edge/Level Interrupt

R/W

Ch 7

0x0870

Dynamic Status

R/W

0x0874

Latched Status*

R/W

0x0878

Interrupt Enable

R/W

0x087C

Set Edge/Level Interrupt

R/W

Ch 8

0x0880

Dynamic Status

R/W

0x0884

Latched Status*

R/W

0x0888

Interrupt Enable

R/W

0x088C

Set Edge/Level Interrupt

R/W

A/D Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are located on the Motherboard Memory Space and do not require any Module Address Offsets. These registers are accessed using the absolute addresses listed in the table below.

0x0500

Module 1 Interrupt Vector 1 - BIT

R/W

0x0504

Module 1 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0508

Module 1 Interrupt Vector 3 - FIFO Ch 2

R/W

0x050C

Module 1 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0510

Module 1 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0514

Module 1 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0518

Module 1 Interrupt Vector 7 - FIFO Ch 6

R/W

0x051C

Module 1 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0520

Module 1 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0524 to 0x0544

Module 1 Interrupt Vector 10-18 - Reserved

R/W

0x0548

Module 1 Interrupt Vector 19 - Open

R/W

0x054C

Module 1 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0550

Module 1 Interrupt Vector 21 - Threshold

R/W

0x0554

Module 1 Interrupt Vector 22 - Reserved

R/W

0x0558

Module 1 Interrupt Vector 23 - Saturation

R/W

0x055C to 0x0568

Module 1 Interrupt Vector 24-27 - Reserved

R/W

0x056C

Module 1 Interrupt Vector 28 - Inter-FPGA

R/W

0x0570 to 0x057C

Module 1 Interrupt Vector 29-32 - Reserved

R/W

0x0600

Module 1 Interrupt Steering 1 - BIT

R/W

0x0604

Module 1 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0608

Module 1 Interrupt Steering 3 - FIFO Ch 2

R/W

0x060C

Module 1 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0610

Module 1 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0614

Module 1 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0618

Module 1 Interrupt Steering 7 - FIFO Ch 6

R/W

0x061C

Module 1 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0620

Module 1 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0624 to 0x0644

Module 1 Interrupt Steering 10-18 - Reserved

R/W

0x0648

Module 1 Interrupt Steering 19 - Open

R/W

0x064C

Module 1 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0650

Module 1 Interrupt Steering 21 - Threshold

R/W

0x0654

Module 1 Interrupt Steering 22 - Reserved

R/W

0x0658

Module 1 Interrupt Steering 23 - Saturation

R/W

0x065C to 0x0668

Module 1 Interrupt Steering 24-27 - Reserved

R/W

0x066C

Module 1 Interrupt Steering 28 - Inter-FPGA R/W

0x0670 to 0x067C

0x0700

Module 2 Interrupt Vector 1 - BIT

R/W

0x0704

Module 2 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0708

Module 2 Interrupt Vector 3 - FIFO Ch 2

R/W

0x070C

Module 2 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0710

Module 2 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0714

Module 2 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0718

Module 2 Interrupt Vector 7 - FIFO Ch 6

R/W

0x071C

Module 2 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0720

Module 2 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0724 to 0x0744

Module 2 Interrupt Vector 10-18 - Reserved

R/W

0x0748

Module 2 Interrupt Vector 19 - Open

R/W

0x074C

Module 2 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0750

Module 2 Interrupt Vector 21 - Threshold

R/W

0x0754

Module 2 Interrupt Vector 22 - Reserved

R/W

0x0758

Module 2 Interrupt Vector 23 - Saturation

R/W

0x075C to 0x0768

Module 2 Interrupt Vector 24-27 - Reserved

R/W

0x076C

Module 2 Interrupt Vector 28 - Inter-FPGA

R/W

0x0770 to 0x077C

Module 2 Interrupt Vector 29-32 - Reserved

R/W

0x0800

Module 2 Interrupt Steering 1 - BIT

R/W

0x0804

Module 2 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0808

Module 2 Interrupt Steering 3 - FIFO Ch 2

R/W

0x080C

Module 2 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0810

Module 2 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0814

Module 2 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0818

Module 2 Interrupt Steering 7 - FIFO Ch 6

R/W

0x081C

Module 2 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0820

Module 2 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0824 to 0x0844

Module 2 Interrupt Steering 10-18 - Reserved

R/W

0x0848

Module 2 Interrupt Steering 19 - Open

R/W

0x084C

Module 2 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0850

Module 2 Interrupt Steering 21 - Threshold

R/W

0x0854

Module 2 Interrupt Steering 22 - Reserved

R/W

0x0858

Module 2 Interrupt Steering 23 - Saturation

R/W

0x085C to 0x0868

Module 2 Interrupt Steering 24-27 - Reserved

R/W

0x086C

Module 2 Interrupt Steering 28 - Inter-FPGA R/W

0x0870 to 0x087C

0x0900

Module 3 Interrupt Vector 1 - BIT

R/W

0x0904

Module 3 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0908

Module 3 Interrupt Vector 3 - FIFO Ch 2

R/W

0x090C

Module 3 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0910

Module 3 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0914

Module 3 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0918

Module 3 Interrupt Vector 7 - FIFO Ch 6

R/W

0x091C

Module 3 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0920

Module 3 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0924 to 0x0944

Module 3 Interrupt Vector 10-18 - Reserved

R/W

0x0948

Module 3 Interrupt Vector 19 - Open

R/W

0x094C

Module 3 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0950

Module 3 Interrupt Vector 21 - Threshold

R/W

0x0954

Module 3 Interrupt Vector 22 - Reserved

R/W

0x0958

Module 3 Interrupt Vector 23 - Saturation

R/W

0x095C to 0x0968

Module 3 Interrupt Vector 24-27 - Reserved

R/W

0x096C

Module 3 Interrupt Vector 28 - Inter-FPGA

R/W

0x0970 to 0x097C

Module 3 Interrupt Vector 29-32 - Reserved

R/W

0x0A00

Module 3 Interrupt Steering 1 - BIT

R/W

0x0A04

Module 3 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0A08

Module 3 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0A0C

Module 3 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0A10

Module 3 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0A14

Module 3 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0A18

Module 3 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0A1C

Module 3 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0A20

Module 3 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0A24 to 0x0A44

Module 3 Interrupt Steering 10-18 - Reserved

R/W

0x0A48

Module 3 Interrupt Steering 19 - Open

R/W

0x0A4C

Module 3 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0A50

Module 3 Interrupt Steering 21 - Threshold

R/W

0x0A54

Module 3 Interrupt Steering 22 - Reserved

R/W

0x0A58

Module 3 Interrupt Steering 23 - Saturation

R/W

0x0A5C to 0x0A68

Module 3 Interrupt Steering 24-27 - Reserved

R/W

0x086C

Module 3 Interrupt Steering 28 - Inter-FPGA R/W

0x0870 to 0x087C

0x0B00

Module 4 Interrupt Vector 1 - BIT

R/W

0x0B04

Module 4 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0B08

Module 4 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0B0C

Module 4 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0B10

Module 4 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0B14

Module 4 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0B18

Module 4 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0B1C

Module 4 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0B20

Module 4 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0B24 to 0x0B44

Module 4 Interrupt Vector 10-18 - Reserved

R/W

0x0B48

Module 4 Interrupt Vector 19 - Open

R/W

0x0B4C

Module 4 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0B50

Module 4 Interrupt Vector 21 - Threshold

R/W

0x0B54

Module 4 Interrupt Vector 22 - Reserved

R/W

0x0B58

Module 4 Interrupt Vector 23 - Saturation

R/W

0x0B5C to 0x0B68

Module 4 Interrupt Vector 24-27 - Reserved

R/W

0x0B6C

Module 4 Interrupt Vector 28 - Inter-FPGA

R/W

0x0B70 to 0x0B7C

Module 4 Interrupt Vector 29-32 - Reserved

R/W

0x0C00

Module 4 Interrupt Steering 1 - BIT

R/W

0x0C04

Module 4 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0C08

Module 4 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0C0C

Module 4 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0C10

Module 4 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0C14

Module 4 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0C18

Module 4 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0C1C

Module 4 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0C20

Module 4 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0C24 to 0x0C44

Module 4 Interrupt Steering 10-18 - Reserved

R/W

0x0C48

Module 4 Interrupt Steering 19 - Open

R/W

0x0C4C

Module 4 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0C50

Module 4 Interrupt Steering 21 - Threshold

R/W

0x0C54

Module 4 Interrupt Steering 22 - Reserved

R/W

0x0C58

Module 4 Interrupt Steering 23 - Saturation

R/W

0x0C5C to 0x0C68

Module 4 Interrupt Steering 24-27 - Reserved

R/W

0x0C6C

Module 4 Interrupt Steering 28 - Inter-FPGA R/W

0x0C70 to 0x0C7C

0x0D00

Module 5 Interrupt Vector 1 - BIT

R/W

0x0D04

Module 5 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0D08

Module 5 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0D0C

Module 5 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0D10

Module 5 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0D14

Module 5 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0D18

Module 5 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0D1C

Module 5 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0D20

Module 5 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0D24 to 0x0D44

Module 5 Interrupt Vector 10-18 - Reserved

R/W

0x0D48

Module 5 Interrupt Vector 19 - Open

R/W

0x0D4C

Module 5 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0D50

Module 5 Interrupt Vector 21 - Threshold

R/W

0x0D54

Module 5 Interrupt Vector 22 - Reserved

R/W

0x0D58

Module 5 Interrupt Vector 23 - Saturation

R/W

0x0D5C to 0x0D68

Module 5 Interrupt Vector 24-27 - Reserved

R/W

0x0D6C

Module 5 Interrupt Vector 28 - Inter-FPGA

R/W

0x0D70 to 0x0D7C

Module 5 Interrupt Vector 29-32 - Reserved

R/W

0x0E00

Module 5 Interrupt Steering 1 - BIT

R/W

0x0E04

Module 5 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0E08

Module 5 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0E0C

Module 5 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0E10

Module 5 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0E14

Module 5 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0E18

Module 5 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0E1C

Module 5 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0E20

Module 5 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0E24 to 0x0E44

Module 5 Interrupt Steering 10-18 - Reserved

R/W

0x0E48

Module 5 Interrupt Steering 19 - Open

R/W

0x0E4C

Module 5 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0E50

Module 5 Interrupt Steering 21 - Threshold

R/W

0x0E54

Module 5 Interrupt Steering 22 - Reserved

R/W

0x0E58

Module 5 Interrupt Steering 23 - Saturation

R/W

0x0E5C to 0x0E68

Module 5 Interrupt Steering 24-27 - Reserved

R/W

0x0E6C

Module 5 Interrupt Steering 28 - Inter-FPGA R/W

0x0E70 to 0x0E7C

0x0F00

Module 6 Interrupt Vector 1 - BIT

R/W

0x0F04

Module 6 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0F08

Module 6 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0F0C

Module 6 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0F10

Module 6 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0F14

Module 6 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0F18

Module 6 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0F1C

Module 6 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0F20

Module 6 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0F24 to 0x0F44

Module 6 Interrupt Vector 10-18 - Reserved

R/W

0x0F48

Module 6 Interrupt Vector 19 - Open

R/W

0x0F4C

Module 6 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0F50

Module 6 Interrupt Vector 21 - Threshold

R/W

0x0F54

Module 6 Interrupt Vector 22 - Reserved

R/W

0x0F58

Module 6 Interrupt Vector 23 - Saturation

R/W

0x0F5C to 0x0F68

Module 6 Interrupt Vector 24-27 - Reserved

R/W

0x0F6C

Module 6 Interrupt Vector 28 - Inter-FPGA

R/W

0x0F70 to 0x0F7C

Module 6 Interrupt Vector 29-32 - Reserved

R/W

0x1000

Module 6 Interrupt Steering 1 - BIT

R/W

0x1004

Module 6 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0E08

Module 6 Interrupt Steering 3 - FIFO Ch 2

R/W

0x100C

Module 6 Interrupt Steering 4 - FIFO Ch 3

R/W

0x1010

Module 6 Interrupt Steering 5 - FIFO Ch 4

R/W

0x1014

Module 6 Interrupt Steering 6 - FIFO Ch 5

R/W

0x1018

Module 6 Interrupt Steering 7 - FIFO Ch 6

R/W

0x101C

Module 6 Interrupt Steering 8 - FIFO Ch 7

R/W

0x1020

Module 6 Interrupt Steering 9 - FIFO Ch 8

R/W

0x1024 to 0x1044

Module 6 Interrupt Steering 10-18 - Reserved

R/W

0x1048

Module 6 Interrupt Steering 19 - Open

R/W

0x104C

Module 6 Interrupt Steering 20 - ExtPwrLoss

R/W

0x1050

Module 6 Interrupt Steering 21 - Threshold

R/W

0x1054

Module 6 Interrupt Steering 22 - Reserved

R/W

0x1058

Module 6 Interrupt Steering 23 - Saturation

R/W

0x105C to 0x1068

Module 6 Interrupt Steering 24-27 - Reserved

R/W

0x106C

Module 6 Interrupt Steering 28 - Inter-FPGA

R/W

0x1070 to 0x107C

Module 6 Interrupt Steering 29-32 - Reserved

R/W

D/A Output Registers

The D/A output is normally in terms of voltage. When the Enable Floating Point Mode is enabled, the register value is formatted as a Single Precision Floating Point Value (IEEE-754). In addition, the D/A output value can be specified in engineering units rather than voltage by setting the Floating Point Scale and Floating Point Offset register values to reflect the conversion algorithm.

DAC Value

Function: Sets the output voltage for the channel.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: DAC values are dependent on Voltage Range setting for the channel

*Enable Floating Point Mode*: 0 (Integer Mode) Unipolar: 0x0000 0000 to
   0x0000 FFFF Bipolar (2's compliment.
   16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
     Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Operational Settings: Refer to section Appendix B: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

D/A Control Registers

The D/A control registers provide the ability to specify the polarity and voltage range, update rate, and the enabling or disabling of the D/A outputs. The D/A channels are monitored to detect overcurrent conditions and will automatically disable the D/A output. In the event of an overcurrent condition, the D/A channel needs to be “reset” by writing to the Overcurrent Reset register.

Voltage Range

Function: Sets voltage polarity and range for each channel. The value written to the DAC Value registers will correlate to the voltage range set in this register. Note: if the Enable Floating Point Mode register is set to 1, the Floating Point Scale register must be set to the reciprocal of Voltage Range for direct voltage output.

Type: unsigned binary word (32-bit)

Data Range: See table below

Read/Write: R/W

Initialized Value: 0 (Unipolar: 0-5 V)

Operational Settings: Write to the register with a value from the table to select the range. For example, for a ±10V bipolar range write a 0x4 to the register.

Reg Value

Voltage Range

0x0

Unipolar: 0 – 5 V

0x1

Unipolar: 0 – 10 V

0x2

Bipolar: ± 2.5 V

0x3

Bipolar: ± 5 V

0x4

Bipolar: ± 10 V

Voltage Range

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

Output Enable

Function: Enables the voltage to appear on the output.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write*: R/W

Initialized Value: 0 (Channel outputs are disabled)

Operational Settings: Set bit to 1 to activate the output. Set bit to 0 to disable the output.

Output Enable

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Update Rate

Function: Sets the output rate for the DAC output and FIFO Data Output

Type: unsigned binary word (32bit)

Data Range: 0x0000 09C4 to 0x0000 61A8; 400µs (2.5kHz) to 40µs (25kHz).

Read/Write: R/W

Initialized Value: 0x0000 61A8 (40µs) (25kHz)

Operational Settings: This setting is the output rate for each DAC. One update rate applies to all channels.

Overcurrent Reset

Function: Resets over loaded channels based on the current value read in the Wrap Current register.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0

Operational Settings: Set to 1 to reset over loaded channels. Writing a 1 to this register will re-enable over loaded channels.

Overcurrent Reset

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D/A Measurement Registers

The measured voltage and current for the D/A output can be read from the Wrap Voltage, Wrap Current and Internal Voltage registers.

Wrap Voltage

Function: Wrap voltage reading from the channel’s output. Used in conjunction with BIT to verify that the output voltage is within range.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode) Data Range:

*Enable Floating Point Mode*: 0 (Integer Mode) Unipolar: 0x0000 0000 to
    0x0003 FFFF; Bipolar: 0x0002 0000 – 0x0001 FFFF Bipolar (2's
    compliment.
    18-bit value sign extended to 32 bits): 0xFFFE 0000 to 0x0001 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
    Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: 0

Operational Settings:

Integer Mode: To calculate the LSB subtract the minimum voltage range from the maximum voltage range then divide by 2^16. For example, if the value in the Voltage Range register is range 0-10V then the LSB would have value (10-0)/2^16 = .153 mV. Sign bit = D17 for bipolar ranges.

Floating Point Mode: Convert the IEEE-754 Single Precision 32-bit value to a floating point value. For example, if the register value is 0x4020 0000, this is equivalent to 2.5, which represents 2.5V.

Wrap Voltage (Enable Floating Point Mode: Integer Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Wrap Voltage (Enable Floating Point Mode: Floating Point Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Wrap Current

Function: Wrap current reading from the channel’s output. Reads current values of D/A outputs being delivered per channel.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode) Data Range:

*Enable Floating Point Mode*: 0 (Integer Mode) Bipolar (2's compliment.
    18-bit value sign extended to 32 bits): 0xFFFE 0000 to 0x0000 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
      Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: 0

Operational Settings:

Integer Mode: LSB = 305 nA. Sign bit = D17.

Floating Point Mode: Convert the IEEE-754 Single Precision 32-bit value to a floating point value.

Wrap Current (Enable Floating Point Mode: Integer Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Wrap Current (Enable Floating Point Mode: Floating Point Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Internal Voltage

Function: Read the internal voltage value. The interval voltage reading is the voltage before the output switch. If the Output Enable register is configured to be disabled, the Internal Voltage register will contain the voltage reading that would be outputted. Data Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode) Data Range:

*Enable Floating Point Mode*: 0 (Integer Mode) Unipolar: 0x0000 0000 –
    0x0003 FFFF Bipolar (2's compliment.
    18-bit value sign extended to 32 bits): 0xFFFE 0000 to 0x0001 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
      Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: 0

Operational Settings:

Integer Mode: To calculate the LSB subtract the minimum voltage range from the maximum voltage range then divide by 2^16. Sign bit = D17 for bipolar ranges.

Floating Point Mode: Read as Single Precision Floating Point Value (IEEE-754) value.

Internal Voltage (Enable Floating Point Mode: Integer Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Internal Voltage (Enable Floating Point Mode: Floating Point Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D/A Test Registers

Two different tests, one on-line (CBIT) and one off-line (IBIT), can be selected. Test Enabled

Function: Sets bit to enable the associated CBIT (“D2”) or IBIT (“D3”). NOTE: CBIT cannot be disabled.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000C

Read/Write: R/W

Initialized Value: 0x4 (CBIT Test Enabled)

Operational Settings: BIT tests include an on-line CBIT and an off-line IBIT tests. Failures in the BIT test are reflected in the BIT Status registers for the corresponding channels that fail. In addition, an interrupt (if enabled in the BIT Interrupt Enable register) can be triggered when the BIT testing detects failures.

Test Enabled

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

IBIT Test D

CBIT Test 1

0

0

FIFO Registers

The FIFO registers are configurable for each channel.

Data Mode

Function: Sets the data mode of the channel. The output can be based on either the DAC Value register or the RAM Buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write a 0 to set the data source to the DAC Value Register. Write a 1 to set the data source to the FIFO Buffer.

Data Mode

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

FIFO Buffer Data

Function: Data in the form of DAC values are written to this register one word at a time (16 bits) and will be outputted to the channel’s output once triggered. Buffer will be emptied one value at a time when triggered.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range:

Enable Floating Point Mode: 0 (Integer Mode) Unipolar: 0x0000 0000 to 0x0000 FFFF Bipolar (2’s compliment. 16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF

*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
     Floating Point Value (IEEE-754)

Read/Write: W

Initialized Value: 0

Operational Settings: Data is held in FIFO until triggered. FIFO size is 1 mega words per channel (each channel has its own buffer). Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

FIFO Buffer Data (Enable Floating Point Mode: Integer Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

FIFO Buffer Data (Enable Floating Point Mode: Floating Point Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

FIFO Word Count

Function: Reports the number of words stored in the FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R

Initialized Value: 0 (FIFO is empty)

Operational Settings: Each time a value is written to the FIFO buffer this count is incremented by 1. Once the FIFO is triggered, after each value is outputted to the DAC, this count will be decremented by 1. Watermarks and threshold values can be setup to trigger interrupts when this count crosses user defined values. The maximum number of words that can be stored in the FIFO is 1 mega words.

FIFO Thresholds

The FIFO Almost Empty, FIFO Low Watermark, FIFO High Watermark, and FIFO Almost Full sets the threshold limits that are used to set the bits in the FIFO Status register.

FIFO Almost Empty

Function: The FIFO Almost Empty is used to set the limits for the “almost empty” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x400 (1024)

Operational Settings: When the FIFO Word Count register is less than or equal to the value stored in the FIFO Almost Empty Value register, the “almost empty” bit (D1) of the FIFO Status register will be set. When the Words in FIFO counter is greater than the value stored in the register, the “almost empty” bit (D1) of the FIFO Status register will be reset.

FIFO Low Watermark

Function: The FIFO Low Watermark (low-threshold level) is used to set the limits for the “low watermark” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x2000 (8192)

Operational Settings: When the FIFO Word Count register is less than or equal to the value stored in the FIFO Low Watermark Value register, the “low watermark” bit (D2) of the FIFO Status register will be set. When the FIFO Word Count counter is greater than or equal to the value stored in the register, the “low watermark” bit (D2) of the FIFO Status register will be reset.

FIFO High Watermark

Function: The FIFO High Watermark (high-threshold level) is used to set the limits for the “high watermark” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x6000 (24576)

Operational Settings: When the FIFO Word Count register is greater than or equal to the value stored in the FIFO High Watermark Value register, the “high watermark” bit (D3) of the FIFO Status register will be set. When the FIFO Word Count register is less than the value stored in the FIFO High Watermark Value, the “high watermark” bit (D3) of the FIFO Status register will be reset.

FIFO Almost Full

Function: The FIFO Almost Full is used to set the limits for the “almost full” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x7C00 (31744)

Operational Settings: When the FIFO Word Count register is greater than or equal to the value stored in the FIFO Almost Full Value register, the “almost full” bit (D4) of the FIFO Status register will be set. When the Words in FIFO counter is less than the value stored in the register, the “almost full” bit (D4) of the FIFO Status register will be reset

Clear FIFO

Function: Clears the FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0

Operational Settings: Writing a 1 will clear the FIFO buffer and reset the count in the FIFO Word Count register.

Clear FIFO

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Pattern Control

Function: Enable to output all the values written to the FIFO Buffer and then repeat.

Note: Pattern Control for the DA2 supports Loop Mode only.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R/W

Initialized Value: 0

Operational Settings: To activate FIFO Loop Mode in the Pattern Control Register, set the Data Mode register to 1. Then set the bit for the specific channel in the Pattern Control register to 1. Finally, write a 1 to the Software Trigger register. The FIFO will output all values written to the FIFO Data register and then repeat. To stop looping write a 0 to the Software Trigger register.

Pattern Control (FIFO Loop Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Software Trigger

Function: If the memory buffer is enabled writing the trigger value to this register will start the output. Values stored in the FIFO will be output at the set update rate until the FIFO is empty.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: R/W

Initialized Value: 0

Operational Settings: To initiate output from the FIFO Buffer, the Data Mode register must be set to FIFO Mode. Then write a 1 to the Software Trigger register to begin outputting data. The 1 will clear once the FIFO empties.

Software Trigger

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Interrupt Registers

interruptVectorAndSteeringBoilerplate1234

The Interrupt Vector and Interrupt Steering registers are located on the Motherboard Memory Space and do not require any Module Address Offsets. These registers are accessed using the absolute addresses listed in the table below.

0x0500

Module 1 Interrupt Vector 1 - BIT

R/W

0x0504

Module 1 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0508

Module 1 Interrupt Vector 3 - FIFO Ch 2

R/W

0x050C

Module 1 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0510

Module 1 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0514

Module 1 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0518

Module 1 Interrupt Vector 7 - FIFO Ch 6

R/W

0x051C

Module 1 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0520

Module 1 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0524 to 0x0544

Module 1 Interrupt Vector 10-18 - Reserved

R/W

0x0548

Module 1 Interrupt Vector 19 - Open

R/W

0x054C

Module 1 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0550

Module 1 Interrupt Vector 21 - Threshold

R/W

0x0554

Module 1 Interrupt Vector 22 - Reserved

R/W

0x0558

Module 1 Interrupt Vector 23 - Saturation

R/W

0x055C to 0x0568

Module 1 Interrupt Vector 24-27 - Reserved

R/W

0x056C

Module 1 Interrupt Vector 28 - Inter-FPGA

R/W

0x0570 to 0x057C

Module 1 Interrupt Vector 29-32 - Reserved

R/W

0x0600

Module 1 Interrupt Steering 1 - BIT

R/W

0x0604

Module 1 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0608

Module 1 Interrupt Steering 3 - FIFO Ch 2

R/W

0x060C

Module 1 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0610

Module 1 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0614

Module 1 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0618

Module 1 Interrupt Steering 7 - FIFO Ch 6

R/W

0x061C

Module 1 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0620

Module 1 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0624 to 0x0644

Module 1 Interrupt Steering 10-18 - Reserved

R/W

0x0648

Module 1 Interrupt Steering 19 - Open

R/W

0x064C

Module 1 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0650

Module 1 Interrupt Steering 21 - Threshold

R/W

0x0654

Module 1 Interrupt Steering 22 - Reserved

R/W

0x0658

Module 1 Interrupt Steering 23 - Saturation

R/W

0x065C to 0x0668

Module 1 Interrupt Steering 24-27 - Reserved

R/W

0x066C

Module 1 Interrupt Steering 28 - Inter-FPGA R/W

0x0670 to 0x067C

0x0700

Module 2 Interrupt Vector 1 - BIT

R/W

0x0704

Module 2 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0708

Module 2 Interrupt Vector 3 - FIFO Ch 2

R/W

0x070C

Module 2 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0710

Module 2 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0714

Module 2 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0718

Module 2 Interrupt Vector 7 - FIFO Ch 6

R/W

0x071C

Module 2 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0720

Module 2 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0724 to 0x0744

Module 2 Interrupt Vector 10-18 - Reserved

R/W

0x0748

Module 2 Interrupt Vector 19 - Open

R/W

0x074C

Module 2 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0750

Module 2 Interrupt Vector 21 - Threshold

R/W

0x0754

Module 2 Interrupt Vector 22 - Reserved

R/W

0x0758

Module 2 Interrupt Vector 23 - Saturation

R/W

0x075C to 0x0768

Module 2 Interrupt Vector 24-27 - Reserved

R/W

0x076C

Module 2 Interrupt Vector 28 - Inter-FPGA

R/W

0x0770 to 0x077C

Module 2 Interrupt Vector 29-32 - Reserved

R/W

0x0800

Module 2 Interrupt Steering 1 - BIT

R/W

0x0804

Module 2 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0808

Module 2 Interrupt Steering 3 - FIFO Ch 2

R/W

0x080C

Module 2 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0810

Module 2 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0814

Module 2 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0818

Module 2 Interrupt Steering 7 - FIFO Ch 6

R/W

0x081C

Module 2 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0820

Module 2 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0824 to 0x0844

Module 2 Interrupt Steering 10-18 - Reserved

R/W

0x0848

Module 2 Interrupt Steering 19 - Open

R/W

0x084C

Module 2 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0850

Module 2 Interrupt Steering 21 - Threshold

R/W

0x0854

Module 2 Interrupt Steering 22 - Reserved

R/W

0x0858

Module 2 Interrupt Steering 23 - Saturation

R/W

0x085C to 0x0868

Module 2 Interrupt Steering 24-27 - Reserved

R/W

0x086C

Module 2 Interrupt Steering 28 - Inter-FPGA R/W

0x0870 to 0x087C

0x0900

Module 3 Interrupt Vector 1 - BIT

R/W

0x0904

Module 3 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0908

Module 3 Interrupt Vector 3 - FIFO Ch 2

R/W

0x090C

Module 3 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0910

Module 3 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0914

Module 3 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0918

Module 3 Interrupt Vector 7 - FIFO Ch 6

R/W

0x091C

Module 3 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0920

Module 3 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0924 to 0x0944

Module 3 Interrupt Vector 10-18 - Reserved

R/W

0x0948

Module 3 Interrupt Vector 19 - Open

R/W

0x094C

Module 3 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0950

Module 3 Interrupt Vector 21 - Threshold

R/W

0x0954

Module 3 Interrupt Vector 22 - Reserved

R/W

0x0958

Module 3 Interrupt Vector 23 - Saturation

R/W

0x095C to 0x0968

Module 3 Interrupt Vector 24-27 - Reserved

R/W

0x096C

Module 3 Interrupt Vector 28 - Inter-FPGA

R/W

0x0970 to 0x097C

Module 3 Interrupt Vector 29-32 - Reserved

R/W

0x0A00

Module 3 Interrupt Steering 1 - BIT

R/W

0x0A04

Module 3 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0A08

Module 3 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0A0C

Module 3 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0A10

Module 3 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0A14

Module 3 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0A18

Module 3 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0A1C

Module 3 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0A20

Module 3 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0A24 to 0x0A44

Module 3 Interrupt Steering 10-18 - Reserved

R/W

0x0A48

Module 3 Interrupt Steering 19 - Open

R/W

0x0A4C

Module 3 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0A50

Module 3 Interrupt Steering 21 - Threshold

R/W

0x0A54

Module 3 Interrupt Steering 22 - Reserved

R/W

0x0A58

Module 3 Interrupt Steering 23 - Saturation

R/W

0x0A5C to 0x0A68

Module 3 Interrupt Steering 24-27 - Reserved

R/W

0x086C

Module 3 Interrupt Steering 28 - Inter-FPGA R/W

0x0870 to 0x087C

0x0B00

Module 4 Interrupt Vector 1 - BIT

R/W

0x0B04

Module 4 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0B08

Module 4 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0B0C

Module 4 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0B10

Module 4 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0B14

Module 4 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0B18

Module 4 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0B1C

Module 4 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0B20

Module 4 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0B24 to 0x0B44

Module 4 Interrupt Vector 10-18 - Reserved

R/W

0x0B48

Module 4 Interrupt Vector 19 - Open

R/W

0x0B4C

Module 4 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0B50

Module 4 Interrupt Vector 21 - Threshold

R/W

0x0B54

Module 4 Interrupt Vector 22 - Reserved

R/W

0x0B58

Module 4 Interrupt Vector 23 - Saturation

R/W

0x0B5C to 0x0B68

Module 4 Interrupt Vector 24-27 - Reserved

R/W

0x0B6C

Module 4 Interrupt Vector 28 - Inter-FPGA

R/W

0x0B70 to 0x0B7C

Module 4 Interrupt Vector 29-32 - Reserved

R/W

0x0C00

Module 4 Interrupt Steering 1 - BIT

R/W

0x0C04

Module 4 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0C08

Module 4 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0C0C

Module 4 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0C10

Module 4 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0C14

Module 4 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0C18

Module 4 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0C1C

Module 4 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0C20

Module 4 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0C24 to 0x0C44

Module 4 Interrupt Steering 10-18 - Reserved

R/W

0x0C48

Module 4 Interrupt Steering 19 - Open

R/W

0x0C4C

Module 4 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0C50

Module 4 Interrupt Steering 21 - Threshold

R/W

0x0C54

Module 4 Interrupt Steering 22 - Reserved

R/W

0x0C58

Module 4 Interrupt Steering 23 - Saturation

R/W

0x0C5C to 0x0C68

Module 4 Interrupt Steering 24-27 - Reserved

R/W

0x0C6C

Module 4 Interrupt Steering 28 - Inter-FPGA R/W

0x0C70 to 0x0C7C

0x0D00

Module 5 Interrupt Vector 1 - BIT

R/W

0x0D04

Module 5 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0D08

Module 5 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0D0C

Module 5 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0D10

Module 5 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0D14

Module 5 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0D18

Module 5 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0D1C

Module 5 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0D20

Module 5 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0D24 to 0x0D44

Module 5 Interrupt Vector 10-18 - Reserved

R/W

0x0D48

Module 5 Interrupt Vector 19 - Open

R/W

0x0D4C

Module 5 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0D50

Module 5 Interrupt Vector 21 - Threshold

R/W

0x0D54

Module 5 Interrupt Vector 22 - Reserved

R/W

0x0D58

Module 5 Interrupt Vector 23 - Saturation

R/W

0x0D5C to 0x0D68

Module 5 Interrupt Vector 24-27 - Reserved

R/W

0x0D6C

Module 5 Interrupt Vector 28 - Inter-FPGA

R/W

0x0D70 to 0x0D7C

Module 5 Interrupt Vector 29-32 - Reserved

R/W

0x0E00

Module 5 Interrupt Steering 1 - BIT

R/W

0x0E04

Module 5 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0E08

Module 5 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0E0C

Module 5 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0E10

Module 5 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0E14

Module 5 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0E18

Module 5 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0E1C

Module 5 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0E20

Module 5 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0E24 to 0x0E44

Module 5 Interrupt Steering 10-18 - Reserved

R/W

0x0E48

Module 5 Interrupt Steering 19 - Open

R/W

0x0E4C

Module 5 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0E50

Module 5 Interrupt Steering 21 - Threshold

R/W

0x0E54

Module 5 Interrupt Steering 22 - Reserved

R/W

0x0E58

Module 5 Interrupt Steering 23 - Saturation

R/W

0x0E5C to 0x0E68

Module 5 Interrupt Steering 24-27 - Reserved

R/W

0x0E6C

Module 5 Interrupt Steering 28 - Inter-FPGA R/W

0x0E70 to 0x0E7C

0x0F00

Module 6 Interrupt Vector 1 - BIT

R/W

0x0F04

Module 6 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0F08

Module 6 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0F0C

Module 6 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0F10

Module 6 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0F14

Module 6 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0F18

Module 6 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0F1C

Module 6 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0F20

Module 6 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0F24 to 0x0F44

Module 6 Interrupt Vector 10-18 - Reserved

R/W

0x0F48

Module 6 Interrupt Vector 19 - Open

R/W

0x0F4C

Module 6 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0F50

Module 6 Interrupt Vector 21 - Threshold

R/W

0x0F54

Module 6 Interrupt Vector 22 - Reserved

R/W

0x0F58

Module 6 Interrupt Vector 23 - Saturation

R/W

0x0F5C to 0x0F68

Module 6 Interrupt Vector 24-27 - Reserved

R/W

0x0F6C

Module 6 Interrupt Vector 28 - Inter-FPGA

R/W

0x0F70 to 0x0F7C

Module 6 Interrupt Vector 29-32 - Reserved

R/W

0x1000

Module 6 Interrupt Steering 1 - BIT

R/W

0x1004

Module 6 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0E08

Module 6 Interrupt Steering 3 - FIFO Ch 2

R/W

0x100C

Module 6 Interrupt Steering 4 - FIFO Ch 3

R/W

0x1010

Module 6 Interrupt Steering 5 - FIFO Ch 4

R/W

0x1014

Module 6 Interrupt Steering 6 - FIFO Ch 5

R/W

0x1018

Module 6 Interrupt Steering 7 - FIFO Ch 6

R/W

0x101C

Module 6 Interrupt Steering 8 - FIFO Ch 7

R/W

0x1020

Module 6 Interrupt Steering 9 - FIFO Ch 8

R/W

0x1024 to 0x1044

Module 6 Interrupt Steering 10-18 - Reserved

R/W

0x1048

Module 6 Interrupt Steering 19 - Open

R/W

0x104C

Module 6 Interrupt Steering 20 - ExtPwrLoss

R/W

0x1050

Module 6 Interrupt Steering 21 - Threshold

R/W

0x1054

Module 6 Interrupt Steering 22 - Reserved

R/W

0x1058

Module 6 Interrupt Steering 23 - Saturation

R/W

0x105C to 0x1068

Module 6 Interrupt Steering 24-27 - Reserved

R/W

0x106C

Module 6 Interrupt Steering 28 - Inter-FPGA R/W

0x1070 to 0x107C

Appendix A: Integer/Floating Point Mode Programming

Integer Mode Programming

When in Integer Mode, the values in the following registers are dependent on the Polarity and Range settings: A/D Reading and FIFO Buffer Data

UBIT Test Data

Threshold Level and Threshold Hysteresis

Low and High Saturation

A/D Reading and FIFO Buffer Data

The LSB for the 16-bit word resolution for the A/D Reading register and the FIFO Buffer Data register is dependent on the Polarity and Range setting. The 32-bit binary value in these registers use the two’s complement form to represent the positive and negative values.

For example:

ADE Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

LSB = 10.0 / 0x0000 7FFF = 10.0 / 215 = 10.0 / 32768

If the register value is 14745 (binary equivalent for this value is 0x0000 3999), conversion to the voltage value is 14745 * (10.0 / 32768) = 4.50 V.

If the register value is -100 (binary equivalent for this value is 0xFFFF FF9C), conversion to the voltage value is -100 * (10.0 / 32768) = -0.0305 V.

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

LSB = 10.0 / 0x0000 FFFF = 10.0 / 216 = 10.0 / 65536

If the register value is 14745 (binary equivalent for this value is 0x0000 3999), conversion to the voltage value is 14745 * (10.0 / 65536) = 2.25 V.

ADF Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar *& Range = *100.0 V)

LSB = 100.0 / 0x0000 7FFF = 100.0 / 215 = 100.0 / 32768

If the register value is 14745 (binary equivalent for this value is 0x0000 3999), conversion to the voltage value is 14745 * (100.0 / 32768) = 45.0 V.

If the register value is -100 (binary equivalent for this value is 0xFFFF FF9C), conversion to the voltage value is -100 * (100.0 / 32768) = -0.305 V.

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

LSB = 100.0 / 0x0000 FFFF = 100.0 / 216 = 100.0 / 65536

If the register value is 14745 (binary equivalent for this value is 0x0000 3999), conversion to the voltage value is 14745 * (100.0 / 65536) = 22.5 V.

UBIT Test Programming

The value to set in the UBIT Test Data register is dependent on the Polarity and Range setting. In the Integer mode, the A/D Reading register will represent the voltage (ADE, ADF) measured as the result of setting the UBIT test value.

For example:

ADE Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar *& Range = *10.0 V)

LSB = 10.0 / 0x0000 7FFF = 10.0 / 215 = 10.0 / 32768

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Reading(volts)

Binary Value

3.0

3.0 * (32768/10.0) = 9830 =0x0000 2666

2.96

2.96 * (32768/10.0) = 9699 = *0x0000 25E3

-3.0

-3.0 * (32768/10.0) = -9830 =0xFFFF D99A

-2.96

-2.96 * (32768/10.0) = -9699 = 0xFFFF DA1D

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V) LSB = 10.0 / 0x0000 FFFF = 10.0 / 216 = 10.0 / 65536

Test Value (volts)

Binary Value

Reading(volts)

Binary Value

3.0

3.0 * (65536/10.0) = 19661 =0x0000 4CCD

2.96

2.96 * (65536/10.0) = 19399 =0x0000 4BC7

ADF Modules:

  1. Polarity & Range Register =* 0x10* (Polarity =* Bipolar & Range = *100.0 V)

LSB = 100.0 / 0x0000 7FFF = 100.0 / 215 = 100.0 / 32768

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Reading(volts)

Binary Value

30.0

30.0 * (32768/100.0) = 9830 =0x0000 2666

29.6

29.6 * (32768/100.0) = 9699 = *0x0000 25E3

-30.0

-30.0 * (32768/100.0) = -9830 =0xFFFF D99A

-29.6

-29.6 * (32768/100.0) = -9699 = 0xFFFF DA1D

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

LSB = 100.0 / 0x0000 FFFF = 100.0 / 216 = 100.0 / 65536

Test Value (volts)

Binary Value

Reading(volts)

Binary Value

30.0

30.0 * (65536/100.0) = 19661 =0x0000 4CCD

296.

29.6 * (65536/100.0) = 19399 =0x0000 4BC7

Threshold Programming

The LSB for the 16-bit word resolution for the Threshold Detect Level and Threshold Detect Hysteresis registers is dependent on the Polarity and Range setting. The 32-bit binary value in these registers use the two’s complement form to represent the positive and negative values.

For example:

ADE Modules:

  1. Polarity & Range Register = 0x10 *(Polarity = *Bipolar & Range = 10.0 V)

LSB = 10.0 / 0x0000 7FFF = 10.0 / 215 = 10.0 / 32768

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts)(must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

7.5

7.5 * (32768/10.0) = 24576 = 0x0000 6000

0.25

0.25 * (32768/10.0) = 819 = 0x0000 0333

-7.5

-7.5 * (32768/10.0) = -24576 = 0xFFFF A000

0.15

0.15 * (32768/10.0) = 492 = 0x0000 01EC

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

LSB = 10.0 / 0x0000 FFFF = 10.0 / 216 = 10.0 / 65536

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts)(must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

7.5

7.5 * (65536/10.0) = 49152 =0x0000 C000

0.25

0.25 * (65536/10.0) = 1638 =0x0000 0666

ADF Modules:

  1. Polarity & Range Register = 0x10 *(Polarity = *Bipolar *& Range = *100.0 V)

LSB = 100.0 / 0x0000 7FFF = 100.0 / 215 = 100.0 / 32768

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts)(must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

75

75 * (32768/100.0) = 24576 = 0x0000 6000

2.5

2.5 * (32768/100.0) = 819 = 0x0000 0333

-75

-75 * (32768/100.0) = -24576 = 0xFFFF A000

1.5

1.5 * (32768/100.0) = 492 = 0x0000 01EC

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

LSB = 100.0 / 0x0000 FFFF = 100.0 / 216 = 100.0 / 65536

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts)(must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

75.0

75.0 * (65536/100.0) = 49152 = 0x0000 C000

2.5

2.5 * (65536/100.0) = 1638 =0x0000 0666

Saturation Programming

The LSB for the 16-bit word resolution for the Low and High Saturation registers is dependent on the Polarity and Range setting. The 32-bit binary value in these registers use the two’s complement form to represent the positive and negative values.

For example:

ADE Modules:

  1. Polarity & Range Register = 0x10 *(Polarity = *Bipolar & Range = 10.0 V)

LSB = 10.0 / 0x0000 7FFF = 10.0 / 215 = 10.0 / 32768

Low Saturation Value (volts)

Hig h Saturation Value (volts)

Value

Binary Value

Value

Binary Value

-7.5

-7.5 * (32768/10.0) = -24576 = 0xFFFF A000

7.5

7.5 * (32768/10.0) = 24576 = 0x0000 6000

  1. Polarity & Range Register = *0x00 *(Polarity = *Unipolar *& Range = *10.0 V) *

LSB = 10.0 / 0x0000 FFFF = 10.0 / 216 = 10.0 / 65536

Low Saturation Value (volts)

Hig h Saturation Value (volts)

Value

Binary Value

Value

Binary Value

1.5

1.5 * (65536/10.0) = 9830 = 0x0000 2666

ADF Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar *& Range = *100.0 V)

LSB = 100.0 / 0x0000 7FFF = 100.0 / 215 = 100.0 / 32768

Low Saturation Value (volts)

Hig h Saturation Value (volts)

Value

Binary Value

Value

Binary Value

-75

-75 * (32768/100.0) = -24576 = 0xFFFF A000

75

75 * (32768/100.0) = 24576 = 0x0000 6000

  1. Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *100.0 V)

LSB = 100.0 / 0x0000 FFFF = 100.0 / 216 = 100.0 / 65536

Low Saturation Value (volts)

Hig h Saturation Value (volts)

Value

Binary Value

Value

Binary Value

15

15 * (65536/100.0) = 9830 = 0x0000 2666

Floating Point Mode Voltage/Current Programming

When in Floating Point Mode, the registers listed in the Integer Mode Programming section are still dependent on the Polarity and Range settings, however, the module handles the conversion of the 32-bit binary value to Single Precision Floating Point Value (IEEE-754) format. The values in the Floating Point Scale register and Floating Point Offset register are used in the conversion. For results to represent voltage (ADE, ADF modules):

Set Floating Point Scale register to Range
Set Floating Point Offset register to 0

A/D Reading and FIFO Buffer Data

For example:

ADE Modules:

  1. Polarity & Range Register = 0x10 *(Polarity = *Bipolar *& Range = *10.0 V)

Floating Point Scale = 10.0 = *10.0 V *

Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (volts)

Single Precision Floating Point Value (IEEE-754)

14745 / 32768 = 0.45 (0x0000 3999/0x0000 7FFF)

(0.45 * 10.0) + 0.0 = 4.50

0x4090 0000

-100 / 32768 = -0.00305 (0xFFFF FF9C/0x0000 7FFF)

(-0.00305 * 10.0) + 0.0 = -0.0305

0xBCF9 DB23

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar *& Range = *10.0 V)

Floating Point Scale = 10.0 = 10.0 V

Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (volts)

Single Precision Floating Point Value (IEEE-754)

14745 / 65536 = 0.225 0x0000 3999/0x0000 FFFF)

(0.225 * 10.0) + 0.0 = 2.25

0x4010 0000

ADF Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

Floating Point Scale = 100.0 = 100.0 V

Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (volts)

Single Precision Floating Point Value (IEEE-754)

14745 / 32768 = 0.45 (0x0000 3999/0x0000 7FFF)

(0.45 * 100.0) + 0.0 = 4.50

0x4234 0000

-100 / 32768 = -0.00305 (0xFFFF FF9C/0x0000 7FFF)

(-0.00305 * 100.0) + 0.0 = -0.0305

0xBE9C 28F6

UBIT Test Programming

The value to set in the UBIT Test Data register is dependent on the Polarity and Range settings and these settings will determine the 32-bit value to set in this register. In the Floating Point mode, the A/D Reading register will represent the voltage measured as the result of setting the UBIT test value.

For example:

ADE Modules:

  1. Polarity & Range Register = 0x10 *(Polarity = *Bipolar & Range = 10.0 V)

LSB = 10.0 / 0x0000 7FFF = 10.0 / 215 = 10.0 / 32768

Floating Point Scale = 10.0 = 10.0 V

Floating Point Offset = 0

UBIT Test Value Example of A/D Reading

Test Value (volts)

Binary Value

Internal A/D Reading Value

Reading(Volts)

Single Precision Floating Point Value(IEEE-754)

3.0

3.0 * (32768/10.0) = 9830 = 0x0000 2666

9699 / 32768 = 0.296 (0x0000 25E3/0x0000 7FFF)

(0.296 * 10.0) + 0.0 = 2.96

0x403D 70A4

  1. Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *10.0 V)

LSB = 10.0 / 0x0000 FFFF = 10.0 / 2^16 = 10.0 / 65536

Floating Point Scale = 10.0 = 10.0 V

Floating Point Offset = *0 *

UBIT Test Value Example of A/D Reading

Test Value (volts) Binary Value Internal A/D Reading Value Reading(Volts) Single Precision Floating Point Value(IEEE-754)

3.0

3.0 * (65536/10.0) = 19661 =0x0000 4CCD

19399 / 65536 =0.296 (0x0000 4BC7/0x0000 FFFF)

(0.296 * 10.0) + 0.0 = 2.96

0x403D 70A4

= ADF Modules:

  1. Polarity & Range Register = 0x10 *(Polarity = *Bipolar *& Range = *10.0 V)

LSB = 100.0 / 0x0000 7FFF = 100.0 / 2^15 = 100.0 / 65536

Floating Point Scale = 10.0 = 10.0 V

Floating Point Offset = *0 *

UBIT Test Value Example of A/D Reading

Test Value (volts)

Binary Value

Internal A/D Reading Value

Reading(Volts)

Single Precision Floating Point Value(IEEE-754)

30.0

30.0 * (32768/100.0) = 9830 = 0x0000 2666

9699 / 32768 = 0.296 (0x0000 25E3/0x0000 7FFF)

(0.296 * 100.0) + 0.0 = 29.6

0x41EC CCCD

-30.0

-30.0 * (32768/100.0) = -9830 = 0xFFFF D99A

-9699 / 32768 = -0.296 (0xFFFF DA1D/0x0000 7FFF)

(-0.296 * 100.0) + 0.0 = -29.6

0xC1EC CCCD

  1. Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *10.0 V)

LSB = 10.0 / 0x0000 FFFF = 100.0 / 2^16 = 100.0 / 65536

Floating Point Scale = 100.0 = 100.0 V

Floating Point Offset = *0 *

UBIT Test Value Example of A/D Reading

Test Value (volts)

Binary Value

Internal A/D Reading Value

Reading(Volts)

Single Precision Floating Point Value(IEEE-754)

30.0

30.0 * (65536/100.0) = 19661 = 0x0000 4CCD

19399 / 65536 = 0.296 (0x0000 4BC7/0x0000 FFFF)

(0.296 * 100.0) + 0.0 = 29.6

0x41EC CCCD

Threshold Programming

In Floating Point mode, the Threshold Detect Level and Threshold Detect Hysteresis values should be entered in Single Precision Floating Point Value (IEEE-754) format.

For example:

ADE Modules:

  1. Polarity & Range Register = *0x10 *(Polarity = *Bipolar *& Range = *10.0 V) * OR

Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *10.0V)

Floating Point Scale = 10.0 *= *10.0 V

Floating Point Offset = 0

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value

Single Precision Floating Point Value (IEEE-754

Hysteresis

Single Precision Floating Point Value (IEEE-754)

7.5

0x40F0 0000

0.25

0x3E80 0000

-7.5

0xC0F0 0000

0.15

0x3E19 999A

ADF Modules:

  1. Polarity & Range Register = *0x10 *(Polarity = *Bipolar *& Range = *100.0 V) * OR

Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *100.0V)

Floating Point Scale = 100.0 *= *100.0 V

Floating Point Offset = 0

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value

Single Precision Floating Point Value (IEEE-754

Hysteresis

Single Precision Floating Point Value (IEEE-754)

75.0

0x4296 0000

2.5

0x4020 0000

-75.0

0xC296 0000

1.5

0x3FC0 0000

Saturation Programming

In Floating Point mode, the Low and High Saturation values should be entered in Single Precision Floating Point Value (IEEE-754) format.

For example:

ADE Modules:

  1. Polarity & Range Register = *0x10 *(Polarity = *Bipolar *& Range = *10.0 V) * OR

Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *10.0V)

Floating Point Scale = 10.0 *= *10.0 V

Floating Point Offset = 0

Low Saturation Value (volts)

High Saturation Value (volts)

Value

Single Precision Floating Point Value (IEEE-754

Value

Single Precision Floating Point Value (IEEE-754)

-7.5

0xC0F0 0000

7.5

0x40F0 0000

ADF Modules:

  1. Polarity & Range Register = *0x10 *(Polarity = *Bipolar *& Range = *100.0 V) * OR

Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *100.0V)

Floating Point Scale = 100.0 *= *100.0 V

Floating Point Offset = 0

Low Saturation Value (volts)

High Saturation Value (volts)

Value

Single Precision Floating Point Value (IEEE-754

Value

Single Precision Floating Point Value (IEEE-754)

-75.0

0xC296 0000

75.0

0x4296 0000

Floating Point Mode Engineering Units Programming

When in Floating Point Mode, the registers listed in the Integer Mode Programming section are still dependent on the Polarity and Range settings, however, the module handles the conversion of the 32-bit binary value to Single Precision Floating Point Value (IEEE 754) format. The values in the Floating Point Scale register and Floating Point Offset register are used in the conversion. For results to be represent engineering units:

Set Floating Point Scale register to Range * Engineering Unit Conversion
Set Floating Point Offset register to Engineering Unit Conversion Bias

A/D Reading

The following calculation is used to convert A/D Reading to engineering units:

AD Data in Engineering Units (Floating Point) =
	(AD Value (Volts/Current) * Floating Point Scale) + Floating Point Offset

For example:

ADE Modules:

  1. A signal of -10V to 10V indicate a displacement from -38.5mm to 38.5 mm respectively.

Polarity & Range Register =* 0x10 (Polarity = *Bipolar *& Range = *10.0 V)

Floating Point Scale =* Range * Scale Conversion *= 10.0 * 3.85 = 38.5 Floating

Point Offset = 0.0

Voltage (volts)

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (mm)

Single Precision Floating Point Value (IEEE-754)

10.0

32768 / 32768 = 1.0 (0x0000 7FFF/0x0000 7FFF)

(1.0 * 38.5) + 0.0 = 38.5

0x421A 0000

5.0

16384 / 32768 = 0.5 (0x0000 4000/0x0000 7FFF)

(0.5 * 38.5) + 0.0 = 19.25

0x419A 0000

4.5

14745 / 32768 = 0.45 (0x0000 3999/0x0000 7FFF)

(0.45 * 38.5) + 0.0 = 17.325

0x418A 999A

0.0

0 /32768 = 0.0 (0x0000 0000/0x0000 7FFF)

(0.0 * 38.5) + 0.0 = 0.0

0x0000 0000

-0.0305

-100 / 32768 = -0.00305 (0xFFFF FF9C/0x0000 7FFF)

(-0.00305 * 38.5) + 0.0 = 0.117425

0x3DF0 7C85

-5.0

-16384 / 32768 = -0.5 (0xFFFF C000/0x0000 7FFF)

(-0.5 * 38.5) + 0.0 = -19.25

0xC19A 0000

-10.0

-32768 / 32768 = -1.0 (0xFFFF 8000/0x0000 7FFF)

(-1.0 * 38.5) + 0.0 = -38.5

0xC21A 0000

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *10.0 V)

Floating Point Scale = Range * Scale Conversion = *10 * 125 = 1250

Floating Point Offset = -125

Note: Set Low Saturation Value to the equivalent of 1 volt and High Saturation Value to the equivalent to 5 volts.

Voltage (volts)

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (mm)

Single Precision Floating Point Value (IEEE-754)

5.0

32768 / 65536 = 0.5 (0x0000 8000/0x0000 FFFF)

(0.5 * 1250) + (-125) = 500.0

0x43FA 0000

4.0

26214 / 65536= 0.4 (0x0000 6666/0x0000 FFFF)

(0.4 * 1250) + (-125) = 375.0

0x43BB 8000

3.0

19661 / 65536= 0.3 (0x0000 4CCD/0x0000 FFFF)

(0.3 * 1250) + (-125) = 250.0

0x437A 0000

2.5

16384 / 65536= 0.25 (0x0000 4000/0x0000 FFFF)

(0.25 * 1250) + (-125) = 187.5

0x433B 8000

2.0

13107 / 65536= 0.2 (0x0000 3333/0x0000 FFFF)

(0.2 * 1250) + (-125) = 125.0

0x42FA 0000

1.0

6554 / 65536= 0.1 (0x0000 199A/0x0000 FFFF)

(0.1 * 1250) + (-125) = 0.0

0x0000 0000

++ UBIT Test Programming

The value to set in the UBIT Test Data register is dependent on the Polarity and Range settings and these settings will determine the 32-bit value to set in this register. In the Floating Point mode, the A/D Reading register will represent the voltage (ADE, ADF) measured and converted to engineering units as the result of setting the UBIT test value.

For example:

ADE Modules:

  1. A signal of -10V to 10V indicate a displacement from -38.5mm to 38.5 mm respectively.

Polarity & Range Register = 0x10 *(Polarity = *Bipolar *& Range = *10.0 V)

Floating Point Scale = *Range * Scale Conversion *= *10.0 * 3.85 *= *38.5 *

Floating Point Offset = 0.0

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Internal A/D Reading Value

Reading (mm)

Single Precision Floating Point Value (IEEE-754)

3.0

3.0 * (32768/10.0) = 9830 = 0x0000 2666

9699 / 32768 = 0.296 (0x0000 25E3/0x0000 7FFF)

(0.296 * 38.5) + 0.0 = 11.396

0x4136 5604

-3.0

-3.0 * (32768/10.0) = -9830 = 0xFFFF D99A

-9699 / 32768 = -0.296 (0xFFFF DA1D/0x0000 7FFF)

(-0.296 * 38.5) + 0.0 =-11.396

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *10.0 V)

Floating Point Scale = Range * Scale Conversion = 10 * 125 *= *1250

Floating Point Offset = -125

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Internal A/D Reading Value

Reading (mm)

Single Precision Floating Point Value (IEEE-754)

3.0

3.0 * (65536/10.0) =19661 =0x0000 4CCD

19399 / 65536 = 0.296 (0x0000 4BC7/0x0000 FFFF) *(0.296 * 1250) + 0.0 = 370.0

Threshold Programming

In Floating Point mode, the Threshold Detect Level and Threshold Detect Hysteresis values should be entered in Single Precision Floating Point Value (IEEE-754) format in terms of engineering units.

For example:

ADE Modules:

  1. A signal of -10V to 10V indicate a displacement from -38.5mm to 38.5 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = *10.0 * 3.85 *= 38.5 *

Floating Point Offset = 0.0

Threshold Detect Level Value

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

7.5

24576 / 32768 = 0.75 (0x0000 6000/0x0000 7FFF)

(0.75 * 38.5) + 0 = 28.875 0x41E7 0000

0.25

819 / 32768 = 0.025 (0x0000 0333/0x0000 7FFF)

(0.025 * 38.5) + 0 = 0.9625 0x3F76 6666

-7.5

-24576 / 32768 = -0.75 (0xFFFF A000/0x00007FFF)

(-0.75 * 38.5) + 0 = -28.875 0xC1E7 0000

0.15

492 / 32768 = 0.015 (0x0000 01EC/0x0000 7FFF)

(0.015 * 38.5) + 0 = 0.5775 0x3F13 D70A

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10 * 125 = 1250

Floating Point Offset = -125

Note: Set Low Saturation Value to the equivalent of 1 volt and High Saturation Value to the equivalent to 5 volts.

Threshold Detect Level Value

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

7.5

49152 / 65536 = 0.75 (0x0000 C000/0x0000FFFF)

(0.75 * 38.5) + 0 =28.875 0x41E7 0000

0.25

1638 / 65536 = 0.025 (0x0000 0666/0x0000 FFFF)

(0.025 * 38.5) + 0 =0.9625 0x3F76 6666

-7.5

-49152 / 65536 = -0.75 (0xFFFF 4000/0x00007FFF)

(-0.75 * 38.5) + 0 =-28.875 0xC1E7 0000

0.15

983 / 65536 = 0.015 (0x0000 03D7/0x0000 FFFF)

(0.015 * 38.5) + 0 =0.5775 0x3F13 D70A

Saturation Programming

In Floating Point mode, the Low and High Saturation values should be entered in Single Precision Floating Point Value (IEEE-754) format.

For example:

ADE Modules:

  1. A signal of -10V to 10V indicate a displacement from -38.5mm to 38.5 mm respectively.

Polarity & Range Register = 0x10 *(Polarity = *Bipolar *& Range = *10.0 V)

Floating Point Scale = *Range * Scale Conversion *= *10.0 * 3.85 *= 38.5

Floating Point Offset = 0.0

Low Saturation Value

High Saturation Value

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Level Value (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

-9.5

-31130 / 32768 = -0.95 (0xFFFF 8666/0x00007FFF)

(-0.95 * 38.5) + 0 = -36.575 0xC212 4CCD

9.5

31130 / 32768 = 0.95 (0x0000 799A/0x0000 7FFF)

(0.95 * 38.5) + 0 =36.5750x 4212 4CCD

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 *(Polarity = *Unipolar *& Range = *10.0 V)

Floating Point Scale = Range * Scale Conversion *= 10 * 125 = *1250

Floating Point Offset = -125

Note: Set Low Saturation Value to the equivalent of 1 volt and High Saturation Value to the equivalent to 5 volts.

Low Saturation Value

High Saturation Value

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Level Value (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

1.0

6554 / 65536 = 0.1(0x0000 1990/0x0000FFFF)

(0.1 * 1250) +(-125) =0.0 0x0000 0000

5.0

32768 / 65536 = 0.5 (0x0000 0333/0x0000FFFF)

(0.5 * 1250) + (-125) =500.0

DIGITAL-TO-ANALOG FUNCTION

The Digital-to-Analog communications function is similar to the standard DA2 I/O function module (DA2 may be used as a reference/guide within the context of this document)

Principle of Operation

In addition to the functions and features already described, the Digital-to-Analog function includes extensive background BIT/diagnostics that run in the background in normal operation without user intervention. In addition to output signal read-back (wrap) capabilities, overloaded outputs will be detected with automatic channel shutdown protection, with the results displayed in a status word. The modules also include D/A FIFO Buffering for greater control of the output voltage and signal data. The FIFO D/A buffer will accept, store and output the voltage commands, once enabled and triggered, for applications requiring simulation of waveform generation; single or periodic. The output data command word is formatted as a percentage of the full scale (FS) range selection, which allows maximum resolution and accuracy at lower voltage ranges.

Built-In Test (BIT)/Diagnostic Capability

The Digital-to-Analog function supports three types of built-in tests: Power-On, Continuous Background and Initiated. The results of these tests are logically OR’d together and stored in the BIT Dynamic Status and BIT Latched Status registers.

Power-On Self-Test (POST)/Power-On BIT (PBIT)/Start-Up BIT (SBIT)

The power-on self-test is performed on each channel automatically when power is applied and report the results in the BIT Status register when complete. After power-on, the Power-on BIT Complete register should be checked to ensure that POST/PBIT/SBIT test is complete before reading the BIT Dynamic Status and BIT Latched Status registers.

Continuous Background Built-In Test (CBIT)

The background Built-In-Test or Continuous BIT (CBIT) (“D2”) runs in the background where each channel is checked to a test accuracy of 0.2% FS. The testing is totally transparent to the user, requires no external programming, and has no effect on the operation of the module or card.

The technique used by the continuous background BIT (CBIT) test consists of an “add-2, subtract-1” counting scheme. The BIT counter is incremented by 2 when a BIT-fault is detected and decremented by 1 when there is no BIT fault detected and the BIT counter is greater than 0. When the BIT counter exceeds the (programmed) Background BIT Threshold value, the specific channel’s fault bit in the BIT status register will be set. Note, the interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a “count”, the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold “count” based on the BIT interval for that module. The “add-2, subtract-1” counting scheme effectively filters momentary or intermittent anomalies by allowing them to “come and go“ before a BIT fault status or indication is flagged (e.g. BIT faults would register when sustained; i.e. at a ten second interval, not a 10-millisecond interval). This prevents spurious faults from registering valid such as those caused by EMI and/or dirty power causing false BIT faults. Putting more “weight” on errors (“add-2”) and less “weight” on subsequent passing results (subtract-1) will result in a BIT failure indication even if a channel “oscillates” between a pass and fail state.

Initiated Built-In Test (IBIT)

The Digital-to-Analog function supports an off-line Initiated Built-in Test (IBIT) (“D3”).

The IBIT test uses an internal A/D that measures all D/A channels while they remain connected to the I/O and cycle through sixteen signal levels from -FS to +FS. Each channel will be checked to a test accuracy of 0.2% FS. Test cycle is completed within 45 seconds (depending on update rate) and results can be read from the Status registers when IBIT bit changes from 1 to 0. This test requires no user programming and can be enabled via the bus.

D/A FIFO Buffering

The Digital-to-Analog function include D/A FIFO Buffering for greater control of the output voltage and signal data. The D/A FIFO buffers will accept, store and output the voltage (and/or current) commands, once enabled and triggered, for applications requiring simulation of waveform generation; single or periodic. The output data command word is formatted as a percentage of the full scale (FS) range selection, which allows maximum resolution and accuracy at lower voltage ranges.

Status and Interrupts

The Digital-to-Analog function provides registers that indicate faults or events. Refer to “Status and Interrupts Module Manual” for the Principle of Operation description.

Module Common Registers

The Digital-to-Analog function includes module common registers that provide access to module-level bare metal/FPGA revisions & compile times, unique serial number information, and temperature/voltage/current monitoring. Refer to “Module Common Registers Module Manual” for the detailed information.

Engineering Scaling Conversion

The Digital-to-Analog function Data, Voltage and Current Measurement registers can be programmed to be utilized as single precision floating point values (IEEE-754) or as a 32-bit integer value.

When the Enable Floating Point Mode register is set to 1 (Floating Point Mode) the following registers are formatted as Single Precision Floating Point Value (IEEE-754): Wrap Voltage (Volts) Wrap Current (mA)

Internal Voltage (Volts)

DAC Value (Voltage (Volts))*

FIFO Buffer Data*

*When the Enable Floating Point Mode register is set to 1, it is important that these registers are updated with the Single Precision Floating Point (IEEE-754) representation of the value for proper operation of the channel. Conversely, when the Enable Floating Point Mode register is set to 0, these registers must be updated with the Integer 32-bit representation of the value.

Note: when changing the Enable Floating Point Mode from Integer Mode to Floating Point Mode or vice versa, the following steps are followed to avoid faults from falsely being generated:

  1. Set the Enable Floating Point Mode register to the desired mode (Integer or Floating Point).

  2. The application waits for the Floating Point State register to match the value for the requested Floating Point Mode (Integer = 0, Floating Point = 1); this indicates that the module’s conversion of the register values and internal values is complete. Data registers will be converted to the units specified and can be read in that specified format.

It is very often necessary to relate D/A voltage and current to other engineering units such as PSI (Pounds per Square Inch). When the Enable Floating Point Mode register is set to 1, the values entered for the Floating Point Offset register and the Floating-Point Scale register will be used to convert the D/A data from engineering units to voltage or current values. The purpose of this is to offload the processing that is normally performed by the mission processor to convert the physical quantity to voltage or current values for the DAC Value register and the FIFO Buffer Data register. When enabled, the module will compute the D/A data as follows:

D/A Value as Volts/Current (Floating Point) =
	(D/A Value in Engineering Units (Floating Point) + *Floating Point Offset) * Floating Point Scale*

Note:

When Enable Floating Point Mode is set to 1 (Floating Point Mode) the listed registers below are formatted as Single Precision Floating Point Value (IEEE-754) and the values specified in the Floating Point Offset register and the Float Point Scale register are applied:

DAC Value

FIFO Buffer Data – any data left in the FIFO prior to changing the Floating Point Mode will be invalid.

Register Description

The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, a description of the function and, in most cases, a data table.

D/A Output Registers

The D/A output is normally in terms of voltage. When the Enable Floating Point Mode is enabled, the register value is formatted as a Single Precision Floating Point Value (IEEE-754). In addition, the D/A output value can be specified in engineering units rather than voltage by setting the Floating Point Scale and Floating Point Offset register values to reflect the conversion algorithm.

DAC Value

Function: Sets the output voltage for the channel.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: DAC values are dependent on Voltage Range setting for the channel

*Enable Floating Point Mode*: 0 (Integer Mode)
   Unipolar: 0x0000 0000 to 0x0000 FFFF
   Bipolar (2's compliment. 16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode)
     Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Operational Settings*: Refer to section Appendix B: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

D/A Control Registers

The D/A control registers provide the ability to specify the polarity and voltage range, update rate, and the enabling or disabling of the D/A outputs. The D/A channels are monitored to detect overcurrent conditions and will automatically disable the D/A output. In the event of an overcurrent condition, the D/A channel needs to be “reset” by writing to the Overcurrent Reset register.

Voltage Range

Function: Sets voltage polarity and range for each channel. The value written to the DAC Value registers will correlate to the voltage range set in this register. Note: if the Enable Floating Point Mode register is set to 1, the Floating Point Scale register must be set to the reciprocal of Voltage Range for direct voltage output.

Type: unsigned binary word (32-bit)

Data Range: See table below

Read/Write: R/W

Initialized Value: 0 (Unipolar: 0-5 V)

Operational Settings: Write to the register with a value from the table to select the range. For example, for a ±10V bipolar range write a 0x4 to the register.

Reg Value

Voltage Range

0x0

Unipolar: 0 – 5 V

0x1

Unipolar: 0 – 10 V

0x2

Bipolar: ± 2.5 V

0x3

Bipolar: ± 5 V

0x4

Bipolar: ± 10 V

Voltage Range

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

Output Enable

Function: Enables the voltage to appear on the output.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write*: R/W

Initialized Value: 0 (Channel outputs are disabled)

Operational Settings: Set bit to 1 to activate the output. Set bit to 0 to disable the output.

Output Enable

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Update Rate

Function: Sets the output rate for the DAC output and FIFO Data Output

Type: unsigned binary word (32bit)

Data Range: 0x0000 09C4 to 0x0000 61A8; 400µs (2.5kHz) to 40µs (25kHz).

Read/Write: R/W

Initialized Value: 0x0000 61A8 (40µs) (25kHz)

Operational Settings: This setting is the output rate for each DAC. One update rate applies to all channels.

Overcurrent Reset

Function: Resets over loaded channels based on the current value read in the Wrap Current register.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0

Operational Settings: Set to 1 to reset over loaded channels. Writing a 1 to this register will re-enable over loaded channels.

Overcurrent Reset

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D/A Measurement Registers

The measured voltage and current for the D/A output can be read from the Wrap Voltage, Wrap Current and Internal Voltage registers.

Wrap Voltage

Function: Wrap voltage reading from the channel’s output. Used in conjunction with BIT to verify that the output voltage is within range.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode) Data Range:

*Enable Floating Point Mode*: 0 (Integer Mode)
    Unipolar: 0x0000 0000 to 0x0003 FFFF; Bipolar: 0x0002 0000 – 0x0001 FFFF
    Bipolar (2's compliment. 18-bit value sign extended to 32 bits): 0xFFFE 0000 to 0x0001 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode)
    Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: 0

Operational Settings:

Integer Mode: To calculate the LSB subtract the minimum voltage range from the maximum voltage range then divide by 2^16. For example, if the value in the Voltage Range register is range 0-10V then the LSB would have value (10-0)/2^16 = .153 mV. Sign bit = D17 for bipolar ranges.

Floating Point Mode: Convert the IEEE-754 Single Precision 32-bit value to a floating point value. For example, if the register value is 0x4020 0000, this is equivalent to 2.5, which represents 2.5V.

Wrap Voltage (Enable Floating Point Mode: Integer Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Wrap Voltage (Enable Floating Point Mode: Floating Point Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Wrap Current

Function: Wrap current reading from the channel’s output. Reads current values of D/A outputs being delivered per channel.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode) Data Range:

*Enable Floating Point Mode*: 0 (Integer Mode)
    Bipolar (2's compliment. 18-bit value sign extended to 32 bits): 0xFFFE 0000 to 0x0000 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode)
      Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: 0

Operational Settings:

Integer Mode: LSB = 305 nA. Sign bit = D17.

Floating Point Mode: Convert the IEEE-754 Single Precision 32-bit value to a floating point value.

Wrap Current (Enable Floating Point Mode: Integer Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Wrap Current (Enable Floating Point Mode: Floating Point Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Internal Voltage

Function: Read the internal voltage value. The interval voltage reading is the voltage before the output switch. If the Output Enable register is configured to be disabled, the Internal Voltage register will contain the voltage reading that would be outputted. Data Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode) Data Range:

*Enable Floating Point Mode*: 0 (Integer Mode)
    Unipolar: 0x0000 0000 – 0x0003 FFFF
    Bipolar (2's compliment. 18-bit value sign extended to 32 bits): 0xFFFE 0000 to 0x0001 7FFF
*Enable Floating Point Mode*: 1 (Floating Point Mode)
      Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: 0

Operational Settings:

Integer Mode: To calculate the LSB subtract the minimum voltage range from the maximum voltage range then divide by 2^16. Sign bit = D17 for bipolar ranges.

Floating Point Mode: Read as Single Precision Floating Point Value (IEEE-754) value.

Internal Voltage (Enable Floating Point Mode: Integer Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Internal Voltage (Enable Floating Point Mode: Floating Point Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D/A Test Registers

Two different tests, one on-line (CBIT) and one off-line (IBIT), can be selected. Test Enabled

Function: Sets bit to enable the associated CBIT (“D2”) or IBIT (“D3”). NOTE: CBIT cannot be disabled.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000C

Read/Write: R/W

Initialized Value: 0x4 (CBIT Test Enabled)

Operational Settings: BIT tests include an on-line CBIT and an off-line IBIT tests. Failures in the BIT test are reflected in the BIT Status registers for the corresponding channels that fail. In addition, an interrupt (if enabled in the BIT Interrupt Enable register) can be triggered when the BIT testing detects failures.

Test Enabled

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

IBIT Test D

CBIT Test 1

0

0

FIFO Registers

The FIFO registers are configurable for each channel.

Data Mode

Function: Sets the data mode of the channel. The output can be based on either the DAC Value register or the RAM Buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write a 0 to set the data source to the DAC Value Register. Write a 1 to set the data source to the FIFO Buffer.

Data Mode

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

FIFO Buffer Data

Function: Data in the form of DAC values are written to this register one word at a time (16 bits) and will be outputted to the channel’s output once triggered. Buffer will be emptied one value at a time when triggered.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range:

Enable Floating Point Mode: 0 (Integer Mode) Unipolar: 0x0000 0000 to 0x0000 FFFF Bipolar (2’s compliment. 16-bit value sign extended to 32 bits): 0xFFFF 8000 to 0x0000 7FFF

*Enable Floating Point Mode*: 1 (Floating Point Mode)
     Single Precision Floating Point Value (IEEE-754)

Read/Write: W

Initialized Value: 0

Operational Settings: Data is held in FIFO until triggered. FIFO size is 1 mega words per channel (each channel has its own buffer). Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

FIFO Buffer Data (Enable Floating Point Mode: Integer Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

FIFO Buffer Data (Enable Floating Point Mode: Floating Point Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

FIFO Word Count

Function: Reports the number of words stored in the FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R

Initialized Value: 0 (FIFO is empty)

Operational Settings: Each time a value is written to the FIFO buffer this count is incremented by 1. Once the FIFO is triggered, after each value is outputted to the DAC, this count will be decremented by 1. Watermarks and threshold values can be setup to trigger interrupts when this count crosses user defined values. The maximum number of words that can be stored in the FIFO is 1 mega words.

FIFO Thresholds

The FIFO Almost Empty, FIFO Low Watermark, FIFO High Watermark, and FIFO Almost Full sets the threshold limits that are used to set the bits in the FIFO Status register.

FIFO Almost Empty

Function: The FIFO Almost Empty is used to set the limits for the “almost empty” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x400 (1024)

Operational Settings: When the FIFO Word Count register is less than or equal to the value stored in the FIFO Almost Empty Value register, the “almost empty” bit (D1) of the FIFO Status register will be set. When the Words in FIFO counter is greater than the value stored in the register, the “almost empty” bit (D1) of the FIFO Status register will be reset.

FIFO Low Watermark

Function: The FIFO Low Watermark (low-threshold level) is used to set the limits for the “low watermark” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x2000 (8192)

Operational Settings: When the FIFO Word Count register is less than or equal to the value stored in the FIFO Low Watermark Value register, the “low watermark” bit (D2) of the FIFO Status register will be set. When the FIFO Word Count counter is greater than or equal to the value stored in the register, the “low watermark” bit (D2) of the FIFO Status register will be reset.

FIFO High Watermark

Function: The FIFO High Watermark (high-threshold level) is used to set the limits for the “high watermark” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x6000 (24576)

Operational Settings: When the FIFO Word Count register is greater than or equal to the value stored in the FIFO High Watermark Value register, the “high watermark” bit (D3) of the FIFO Status register will be set. When the FIFO Word Count register is less than the value stored in the FIFO High Watermark Value, the “high watermark” bit (D3) of the FIFO Status register will be reset.

FIFO Almost Full

Function: The FIFO Almost Full is used to set the limits for the “almost full” status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x7C00 (31744)

Operational Settings: When the FIFO Word Count register is greater than or equal to the value stored in the FIFO Almost Full Value register, the “almost full” bit (D4) of the FIFO Status register will be set. When the Words in FIFO counter is less than the value stored in the register, the “almost full” bit (D4) of the FIFO Status register will be reset

Clear FIFO

Function: Clears the FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0

Operational Settings: Writing a 1 will clear the FIFO buffer and reset the count in the FIFO Word Count register.

Clear FIFO

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Pattern Control

Function: Enable to output all the values written to the FIFO Buffer and then repeat.

Note: Pattern Control for the DA2 supports Loop Mode only.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R/W

Initialized Value: 0

Operational Settings: To activate FIFO Loop Mode in the Pattern Control Register, set the Data Mode register to 1. Then set the bit for the specific channel in the Pattern Control register to 1. Finally, write a 1 to the Software Trigger register. The FIFO will output all values written to the FIFO Data register and then repeat. To stop looping write a 0 to the Software Trigger register.

Pattern Control (FIFO Loop Mode)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Software Trigger

Function: If the memory buffer is enabled writing the trigger value to this register will start the output. Values stored in the FIFO will be output at the set update rate until the FIFO is empty.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: R/W

Initialized Value: 0

Operational Settings: To initiate output from the FIFO Buffer, the Data Mode register must be set to FIFO Mode. Then write a 1 to the Software Trigger register to begin outputting data. The 1 will clear once the FIFO empties.

Software Trigger

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Engineering Scaling Conversion Registers

The D/A function Data, Voltage and Current Measurement registers can be programmed to be utilized as an IEEE 754 single-precision floatingpoint value or as a 32-bit integer value.

Enable Floating Point Mode

Function: Sets all channels for floating point mode or integer module.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: R/W

Initialized Value: 0 (Integer mode)

Operational Settings: Set bit to 1 to enable Floating Point Mode and 0 for Integer Mode.

Floating Point Offset

Function: Single 32-bit register that sets the floating-point offset to add to D/A output.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: Refer to section Appendix B: Integer/Floating Point Mode Programming for Integer and Floating Point examples.

Floating Point Scale

Function: Single 32-bit register that sets the floating-point scale to multiple to the D/A output.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A Read/Write: R/W

Initialized Value: 0.0

Operational Settings: When changing the Voltage Range, the Floating Point Scale needs to be adjusted in order for the Wrap Voltage and Wrap Current floating point representation to be scaled correctly.

Floating Point State

Function: Indicates whether the module’s internal processing is converting the register values and internal values to the binary representation of the mode selected (Integer or Floating Point).

Type: unsigned binary word (32-bit)

Data Range: 0 to 1 Read/Write: R

Initialized Value: 0

Operational Settings: Indicates the whether the module registers are in Integer (0) or Floating Point Mode (1). When the Enable Floating Point Mode is modified, the application must wait until this register’s value matches the requested mode before changing the values of the configuration and control registers with the values in the units specified (Integer or Floating Point).

Floating Point State

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Background BIT Threshold Programming Registers

The Background BIT Threshold register provides the ability to specify the minimum time before the BIT fault is reported in the BIT Status registers. The BIT Clear Count register provides the ability to reset the BIT counter used in CBIT.

Background BIT Threshold

Type: unsigned binary word (32-bit)

Data Range: 1 ms to 2^32 ms

Read/Write: R/W

Initialized Value: 5 (5 ms)

Operational Settings: The interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a “count”, the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold “count” based on the BIT interval for that module.

BIT Count Clear

Function: Resets the CBIT internal circuitry and count mechanism. Set the bit corresponding to the channel you want to clear.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: W

Initialized Value: 0

Operational Settings: Set bit to 1 for channel to resets the CBIT mechanisms. Bit is self-clearing.

NOTE: BIT Count Clear is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

BIT Clear Count

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

== Module Common Registers

Refer to “Module Common Registers Module Manual” for the register descriptions.

Status and Interrupt Registers

The Digital-to-Analog function provides status registers for BIT, Overcurrent, External Power Under Voltage, Inter-FPGA Failure, and FIFO.

Channel Status Enable

Function: Determines whether to update the status for the channels. This feature can be used to “mask” status bits of unused channels in status registers that are bitmapped by channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF (Channel Status)

Read/Write: R/W

Initialized Value: 0x0000 FFFF

Operational Settings: When the bit corresponding to a given channel in the Channel Status Enable register is not enabled (0) the status will be masked and report “0” or “no failure”. This applies to all statuses that are bitmapped by channel (BIT Status, Open/Over-Voltage Status, and Front-end Amplifier Failure Status).

NOTE: Channel Status Enable is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

NOTE: Background BIT will continue to run even if the Channel Status Enable is set to ‘0'.

Channel Status Enable

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

BIT Dynamic Status BIT Latched Status BIT Interrupt Enable BIT Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

Function: Reports the corresponding bit associated with the channel’s BIT error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt) Initialized Value: 0

Note: BIT Status is part of background testing and the status register may be checked or polled at any given time.

Overcurrent Status

There are four registers associated with the Overcurrent Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

Overcurrent Dynamic Status Overcurrent Latched Status Overcurrent Interrupt Enable Overcurrent Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Function: Reports the corresponding bit associated with the channel’s Overcurrent error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt) Initialized Value: 0

External Power Under Voltage Status

There are four registers associated with the External Power Under Voltage Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

D0 = +12V External Power Under Voltage

D1= -12V External Power Under Voltage

External Power Under Voltage Dynamic Status External Power Under Voltage Latched Status External Power Under Voltage Interrupt Enable External Power Under Voltage Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-12V

+12V

Function: Reports the corresponding bit associated with the channel’s External Power Under Voltage error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0003

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Inter-FPGA Failure Status

Data is periodically transferred between the Lattice FPGA and the Xilinx FPGA. A CRC value is calculated and verified with each data transfer. A CRC error flag is sent from the Lattice FPGA to the Xilinx FPGA if a CRC error is detected. The Xilinx FPGA contains a counter that will increase by two when a CRC error is flagged and decremented by one when there is no CRC error. If the counter reaches ten, the Xilinx FPGA will set the Inter-FPGA Failure status bit and shut down the isolated power supply. To recover from an Inter-FPGA Failure, the module needs to be reset and re-initialized.

There are four registers associated with the Inter-FPGA Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. 0 = Normal; 0xFFFF = Inter-FPGA Communication Failure. The status represents the status for all channels on the module.

NOTE: Inter-FPGA Failure Status is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

Inter-FPGA Failure Dynamic Status Inter-FPGA Failure Latched Status Inter-FPGA Failure Interrupt Enable Inter-FPGA Failure Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

Function: Sets the corresponding bit associated with the channel’s Inter-FPGA Failure error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x8000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

FIFO Status

There are four registers associated with the FIFO Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. D0-D5 is used to show the different conditions of the buffer.

Description

Configurable?

D0

Almost Full; 1 when FIFO Count >= “FIFO Almost Full” register

Yes

D1

Almost Empty; 1 when FIFO Count ⇐ “FIFO Almost Empty” register

Yes

D2

High Watermark; 1 when FIFO Count >= “FIFO High Watermark” register

Yes

D3

Low Watermark; 1 when FIFO Count ⇐ “FIFO Low Watermark” register

Yes

D4

Empty; 1 when FIFO Count = 0

No

D5

Full; 1 when FIFO Count = 1 Mega Words (0x000F FFFF)

No

FIFO Dynamic Status FIFO Latched Status FIFO Interrupt Enable FIFO Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

D

D

D

D

D

D

Function: Sets the corresponding bit associated with the FIFO status type; there are separate registers for each channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 003F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 1 (Empty) Note:

Shown below is an example of interrupts generated for the High Watermark. As shown, the interrupt is generated as the FIFO Word Count crosses the High Watermark. The interrupt will not be generated a second time until the count goes below the watermark and then above it again.
CME CMF Img05

Interrupt Steering and Vector

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Note: The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Direct Interrupt to VME

1

Direct Interrupt to ARM Processor (via SerDes) (Custom App on ARM or NAI Ethernet Listener App)

2

Direct Interrupt to PCIe Bus

5

Direct Interrupt to cPCI Bus

6

Function Register Map

Key: Bold Italic = Configuration/Control Bold Underline = Measurement/Status

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e. write-1-to-clear, writing a ‘1' to a bit set to ‘1' will set the bit to ‘0').

  • Data is available in Floating Point if Enable Floating Point Mode register is set to Floating Point Mode. ~ Data is always in Floating Point.

D/A Output Registers

0x2004

DAC Value Ch 1**

R/W

0x2104

DAC Value Ch 2**

R/W

0x2204

DAC Value Ch 3**

R/W

0x2304

DAC Value Ch 4**

R/W

0x2404

DAC Value Ch 5**

R/W

0x2504

DAC Value Ch 6**

R/W

0x2604

DAC Value Ch 7**

R/W

0x2704

DAC Value Ch 8**

R/W

D/A Control Registers

0x2000

Voltage Range Ch 1

R/W

0x2100

Voltage Range Ch 2

R/W

0x2200

Voltage Range Ch 3

R/W

0x2300

Voltage Range Ch 4

R/W

0x2400

Voltage Range Ch 5

R/W

0x2500

Voltage Range Ch 6

R/W

0x2600

Voltage Range Ch 7

R/W

0x2700

Voltage Range Ch 8

R/W

0x100C

Update Rate Ch 1-8

R/W

0x1010

Overcurrent Reset Ch 1-8

R/W

0x1014

Output Enable Ch 1-8

R/W

D/A Measurement Registers

0x2008

Wrap Voltage Ch 1**

R

0x2108

Wrap Voltage Ch 2**

R

0x2208

Wrap Voltage Ch 3**

R

0x2308

Wrap Voltage Ch 4**

R

0x2408

Wrap Voltage Ch 5**

R

0x2508

Wrap Voltage Ch 6**

R

0x2608

Wrap Voltage Ch 7**

R

0x2708

Wrap Voltage Ch 8**

R

0x200C

Wrap Current Ch 1**

R

0x210C

Wrap Current Ch 2**

R

0x220C

Wrap Current Ch 3**

R

0x230C

Wrap Current Ch 4**

R

0x240C

Wrap Current Ch 5**

R

0x250C

Wrap Current Ch 6**

R

0x260C

Wrap Current Ch 7**

R

0x270C

Wrap Current Ch 8**

R

0x2044

Internal Voltage Ch 1**

R

0x2144

Internal Voltage Ch 2**

R

0x2244

Internal Voltage Ch 3**

R

0x2344

Internal Voltage Ch 4**

R

0x2444

Internal Voltage Ch 5**

R

0x2544

Internal Voltage Ch 6**

R

0x2644

Internal Voltage Ch 7**

R

0x2744

Internal Voltage Ch 8**

R

FIFO Registers

0x2008

FIFO Buffer Data Ch 1**

R/W

0x2118

FIFO Buffer Data Ch 2**

R/W

0x2218

FIFO Buffer Data Ch 3**

R/W

0x2318

FIFO Buffer Data Ch 4**

R/W

0x2418

FIFO Buffer Data Ch 5**

R/W

0x2518

FIFO Buffer Data Ch 6**

R/W

0x2618

FIFO Buffer Data Ch 7**

R/W

0x2718

FIFO Buffer Data Ch 8**

R/W

0x201C

FIFO Word Count Ch 1

R

0x211C

FIFO Word Count Ch 2

R

0x221C

FIFO Word Count Ch 3

R

0x231C

FIFO Word Count Ch 4

R

0x241C

FIFO Word Count Ch 5

R

0x251C

FIFO Word Count Ch 6

R

0x261C

FIFO Word Count Ch 7

R

0x271C

FIFO Word Count Ch 8

R

0x2010

Clear FIFO Ch 1

W

0x2110

Clear FIFO Ch 2

W

0x2210

Clear FIFO Ch 3

W

0x2310

Clear FIFO Ch 4

W

0x2410

Clear FIFO Ch 5

W

0x2510

Clear FIFO Ch 6

W

0x2610

Clear FIFO Ch 7

W

0x2710

Clear FIFO Ch 8

W

0x2014

FIFO Software Trigger Ch 1

W

0x2114

FIFO Software Trigger Ch 2

W

0x2214

FIFO Software Trigger Ch 3

W

0x2314

FIFO Software Trigger Ch 4

W

0x2414

FIFO Software Trigger Ch 5

W

0x2514

FIFO Software Trigger Ch 6

W

0x2614

FIFO Software Trigger Ch 7

W

0x2714

FIFO Software Trigger Ch 8

W

0x1004

Data Mode Ch 1-8

R/W

0x1008

Pattern Control Ch 1-8

R/W

FIFO Thresholds

0x2020

FIFO Almost Empty Value Ch 1

R/W

0x2120

FIFO Almost Empty Value Ch 2

R/W

0x2220

FIFO Almost Empty Value Ch 3

R/W

0x2320

FIFO Almost Empty Value Ch 4

R/W

0x2420

FIFO Almost Empty Value Ch 5

R/W

0x2520

FIFO Almost Empty Value Ch 6

R/W

0x2620

FIFO Almost Empty Value Ch 7

R/W

0x2720

FIFO Almost Empty Value Ch 8

R/W

0x2024

FIFO Low Watermark Value Ch 1

R

0x2124

FIFO Low Watermark Value Ch 2

R

0x2224

FIFO Low Watermark Value Ch 3

R

0x2324

FIFO Low Watermark Value Ch 4

R

0x2424

FIFO Low Watermark Value Ch 5

R

0x2524

FIFO Low Watermark Value Ch 6

R

0x2624

FIFO Low Watermark Value Ch 7

R

0x2724

FIFO Low Watermark Value Ch 8

R

0x2028

FIFO High Watermark Value Ch 1

R/W

0x2128

FIFO High Watermark Value Ch 2

R/W

0x2228

FIFO High Watermark Value Ch 3

R/W

0x2328

FIFO High Watermark Value Ch 4

R/W

0x2428

FIFO High Watermark Value Ch 5

R/W

0x2528

FIFO High Watermark Value Ch 6

R/W

0x2628

FIFO High Watermark Value Ch 7

R/W

0x2728

FIFO High Watermark Value Ch 8

R/W

0x202C

FIFO Almost Full Value Ch 1

R

0x212C

FIFO Almost Full Value Ch 2

R

0x222C

FIFO Almost Full Value Ch 3

R

0x232C

FIFO Almost Full Value Ch 4

R

0x242C

FIFO Almost Full Value Ch 5

R

0x252C

FIFO Almost Full Value Ch 6

R

0x262C

FIFO Almost Full Value Ch 7

R

0x272C

FIFO Almost Full Value Ch 8

R

Engineering Scaling Conversion Registers

0x02B4

Enable Floating Point

R/W

0x0264

Floating Point State

R

0x2050

Floating Point Offset Ch 1~

R/W

0x2150

Floating Point Offset Ch 2~

R/W

0x2250

Floating Point Offset Ch 3~

R/W

0x2350

Floating Point Offset Ch 4~

R/W

0x2450

Floating Point Offset Ch 5~

R/W

0x2550

Floating Point Offset Ch 6~

R/W

0x2650

Floating Point Offset Ch 7~

R/W

0x2750

Floating Point Offset Ch 8~

R/W

0x2054

Floating Point Scale Ch 1~

R

0x2154

Floating Point Scale Ch 2~

R

0x2254

Floating Point Scale Ch 3~

R

0x2354

Floating Point Scale Ch 4~

R

0x2454

Floating Point Scale Ch 5~

R

0x2554

Floating Point Scale Ch 6~

R

0x2654

Floating Point Scale Ch 7~

R

0x2754

Floating Point Scale Ch 8~

R

Module Common Registers

Refer to “Module Common Registers Module Manual” for the Module Common Registers Function Register Map.

D/A Status Registers

0x02B0

Channel Status Enabled

R/W

BIT Registers

BIT

0x0800

Dynamic Status

R

0x0804

Latched Status*

R/W

0x0808

Interrupt Enable

R/W

0x080C

Set Edge/Level Interrupt

R/W

0x0248

Test Enabled

R/W

0x02B8

Background BIT Threshold

R/W

0x02BC

BIT Count Clear

W

0x02AC

Power-on BIT Complete++

R

++After power-on, Power-on BIT Complete should be checked before reading the BIT Latched Status.

Status Registers

Overcurrent

0x0910

Dynamic Status

R

0x0914

Latched Status*

R/W

0x0918

Interrupt Enable

R/W

0x091C

Set Edge/Level Interrupt

R/W

External Power Under Voltage

0x0970

Dynamic Status

R

0x0974

Latched Status*

R/W

0x0978

Interrupt Enable

R/W

0x097C

Set Edge/Level Interrupt

R/W

Inter-FPGA Failure

0x09B0

Dynamic Status

R

0x09B4

Latched Status*

R/W

0x09B8

Interrupt Enable

R/W

0x09BC

Set Edge/Level Interrupt

R/W

Ch 1

0x0810

Dynamic Status

R

0x0814

Latched Status*

R/W

0x0818

Interrupt Enable

R/W

0x081C

Set Edge/Level Interrupt

R/W

Ch 2

0x0820

Dynamic Status

R

0x0824

Latched Status*

R/W

0x0828

Interrupt Enable

R/W

0x082C

Set Edge/Level Interrupt

R/W

Ch 3

0x0830

Dynamic Status

R

0x0834

Latched Status*

R/W

0x0838

Interrupt Enable

R/W

0x083C

Set Edge/Level Interrupt

R/W

Ch 4

0x0840

Dynamic Status

R

0x0844

Latched Status*

R/W

0x0848

Interrupt Enable

R/W

0x084C

Set Edge/Level Interrupt

R/W

Ch 5

0x0850

Dynamic Status

R

0x0854

Latched Status*

R/W

0x0858

Interrupt Enable

R/W

0x085C

Set Edge/Level Interrupt

R/W

Ch 6

0x0860

Dynamic Status

R

0x0864

Latched Status*

R/W

0x0868

Interrupt Enable

R/W

0x086C

Set Edge/Level Interrupt

R/W

Ch 7

0x0870

Dynamic Status

R/W

0x0874

Latched Status*

R/W

0x0878

Interrupt Enable

R/W

0x087C

Set Edge/Level Interrupt

R/W

Ch 8

0x0880

Dynamic Status

R/W

0x0884

Latched Status*

R/W

0x0888

Interrupt Enable

R/W

0x088C

Set Edge/Level Interrupt

R/W

D/A Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are located on the Motherboard Memory Space and do not require any Module Address Offsets. These registers are accessed using the absolute addresses listed in the table below.

0x0500

Module 1 Interrupt Vector 1 - BIT

R/W

0x0504

Module 1 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0508

Module 1 Interrupt Vector 3 - FIFO Ch 2

R/W

0x050C

Module 1 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0510

Module 1 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0514

Module 1 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0518

Module 1 Interrupt Vector 7 - FIFO Ch 6

R/W

0x051C

Module 1 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0520

Module 1 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0524 to 0x0540

Module 1 Interrupt Vector 10-17 - Reserved

R/W

0x0544

Module 1 Interrupt Vector 18 - Overcurrent

R/W

0x0548

Module 1 Interrupt Vector 19 - Reserved

R/W

0x054C

Module 1 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0550 to 0x0568

Module 1 Interrupt Vector 21-27 - Reserved

R/W

0x056C

Module 1 Interrupt Vector 28 - Inter-FPGA

R/W

0x0570 to 0x057C

Module 1 Interrupt Vector 29-32 - Reserved

0x0600

Module 1 Interrupt Steering 1 - BIT

R/W

0x0604

Module 1 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0608

Module 1 Interrupt Steering 3 - FIFO Ch 2

R/W

0x060C

Module 1 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0610

Module 1 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0614

Module 1 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0618

Module 1 Interrupt Steering 7 - FIFO Ch 6

R/W

0x061C

Module 1 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0620

Module 1 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0624 to 0x0640

Module 1 Interrupt Steering 10-17 - Reserved

R/W

0x0644

Module 1 Interrupt Steering 18 - Overcurrnt

R/W

0x0648

Module 1 Interrupt Steering 19 - Reserved

R/W

0x064C

Module 1 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0650 to 0x0668

Module 1 Interrupt Steering 21-27 - Reserved

R/W

0x066C

Module 1 Interrupt Steering 28 - Inter-FPGA R/W

0x0670 to 0x067C

0x0700

Module 2 Interrupt Vector 1 - BIT

R/W

0x0704

Module 2 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0708

Module 2 Interrupt Vector 3 - FIFO Ch 2

R/W

0x070C

Module 2 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0710

Module 2 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0714

Module 2 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0718

Module 2 Interrupt Vector 7 - FIFO Ch 6

R/W

0x071C

Module 2 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0720

Module 2 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0724 to 0x0740

Module 2 Interrupt Vector 10-17 - Reserved

R/W

0x0744

Module 2 Interrupt Vector 18 - Overcurrent

R/W

0x0748

Module 2 Interrupt Vector 19 - Reserved

R/W

0x074C

Module 2 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0754

Module 2 Interrupt Vector 22 - Reserved

R/W

0x0758

Module 2 Interrupt Vector 23 - Saturation

R/W

0x075C to 0x0768

Module 2 Interrupt Vector 24-27 - Reserved

R/W

0x076C

Module 2 Interrupt Vector 28 - Inter-FPGA

R/W

0x0770 to 0x077C

Module 2 Interrupt Vector 29-32 - Reserved

R/W

0x0800

Module 2 Interrupt Steering 1 - BIT

R/W

0x0804

Module 2 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0808

Module 2 Interrupt Steering 3 - FIFO Ch 2

R/W

0x080C

Module 2 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0810

Module 2 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0814

Module 2 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0818

Module 2 Interrupt Steering 7 - FIFO Ch 6

R/W

0x081C

Module 2 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0820

Module 2 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0824 to 0x0840

Module 2 Interrupt Steering 10-17 - Reserved

R/W

0x0844

Module 2 Interrupt Steering 18 - Overcurrent

R/W

0x0848

Module 2 Interrupt Steering 19 - Reserved

R/W

0x084C

Module 2 Interrupt Steering 20 - ExtPwrLoss

R/W

0x085C to 0x0868

Module 2 Interrupt Steering 21-27 - Reserved

R/W

0x086C

Module 2 Interrupt Steering 28 - Inter-FPGA R/W

0x0870 to 0x087C

0x0900

Module 3 Interrupt Vector 1 - BIT

R/W

0x0904

Module 3 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0908

Module 3 Interrupt Vector 3 - FIFO Ch 2

R/W

0x090C

Module 3 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0910

Module 3 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0914

Module 3 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0918

Module 3 Interrupt Vector 7 - FIFO Ch 6

R/W

0x091C

Module 3 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0920

Module 3 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0924 to 0x0940

Module 3 Interrupt Vector 10-17 - Reserved

R/W

0x0944

Module 3 Interrupt Vector 18 - Overcurrent

R/W

0x0948

Module 3 Interrupt Vector 19 - Reserved

R/W

0x094C

Module 3 Interrupt Vector 20 - ExtPwrLoss

R/W

0x095C to 0x0968

Module 3 Interrupt Vector 21-27 - Reserved

R/W

0x096C

Module 3 Interrupt Vector 28 - Inter-FPGA

R/W

0x0970 to 0x097C

Module 3 Interrupt Vector 29-32 - Reserved

R/W

0x0A00

Module 3 Interrupt Steering 1 - BIT

R/W

0x0A04

Module 3 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0A08

Module 3 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0A0C

Module 3 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0A10

Module 3 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0A14

Module 3 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0A18

Module 3 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0A1C

Module 3 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0A20

Module 3 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0A24 to 0x0A40

Module 3 Interrupt Steering 10-17 - Reserved

R/W

0x0A44

Module 3 Interrupt Steering 18 - Overcurrent

R/W

0x0A48

Module 3 Interrupt Steering 19 - Reserved

R/W

0x0A4C

Module 3 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0A5C to 0x0A68

Module 3 Interrupt Steering 21-27 - Reserved

R/W

0x086C

Module 3 Interrupt Steering 28 - Inter-FPGA R/W

0x0870 to 0x087C

0x0B00

Module 4 Interrupt Vector 1 - BIT

R/W

0x0B04

Module 4 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0B08

Module 4 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0B0C

Module 4 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0B10

Module 4 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0B14

Module 4 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0B18

Module 4 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0B1C

Module 4 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0B20

Module 4 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0B24 to 0x0B40

Module 4 Interrupt Vector 10-17 - Reserved

R/W

0x0B44

Module 4 Interrupt Vector 18 - Overcurrent

R/W

0x0B48

Module 4 Interrupt Vector 19 - Reserved

R/W

0x0B4C

Module 4 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0B5C to 0x0B68

Module 4 Interrupt Vector 21-27 - Reserved

R/W

0x0B6C

Module 4 Interrupt Vector 28 - Inter-FPGA

R/W

0x0B70 to 0x0B7C

Module 4 Interrupt Vector 29-32 - Reserved

R/W

0x0C00

Module 4 Interrupt Steering 1 - BIT

R/W

0x0C04

Module 4 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0C08

Module 4 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0C0C

Module 4 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0C10

Module 4 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0C14

Module 4 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0C18

Module 4 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0C1C

Module 4 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0C20

Module 4 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0C24 to 0x0C44

Module 4 Interrupt Steering 10-18 - Reserved

R/W

0x0C44

Module 4 Interrupt Steering 18 - Overcurrent

R/W

0x0C48

Module 4 Interrupt Steering 19 - Reserved

R/W

0x0C4C

Module 4 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0C5C to 0x0C68

Module 4 Interrupt Steering 21-27 - Reserved

R/W

0x0C6C

Module 4 Interrupt Steering 28 - Inter-FPGA R/W

0x0C70 to 0x0C7C

0x0D00

Module 5 Interrupt Vector 1 - BIT

R/W

0x0D04

Module 5 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0D08

Module 5 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0D0C

Module 5 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0D10

Module 5 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0D14

Module 5 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0D18

Module 5 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0D1C

Module 5 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0D20

Module 5 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0D24 to 0x0D40

Module 5 Interrupt Vector 10-17 - Reserved

R/W

0x0D44

Module 5 Interrupt Vector 18 - Overcurrent

R/W

0x0D48

Module 5 Interrupt Vector 19 - Reserved

R/W

0x0D4C

Module 5 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0D5C to 0x0D68

Module 5 Interrupt Vector 21-27 - Reserved

R/W

0x0D6C

Module 5 Interrupt Vector 28 - Inter-FPGA

R/W

0x0D70 to 0x0D7C

Module 5 Interrupt Vector 29-32 - Reserved

R/W

0x0E00

Module 5 Interrupt Steering 1 - BIT

R/W

0x0E04

Module 5 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0E08

Module 5 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0E0C

Module 5 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0E10

Module 5 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0E14

Module 5 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0E18

Module 5 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0E1C

Module 5 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0E20

Module 5 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0E24 to 0x0E40

Module 5 Interrupt Steering 10-17 - Reserved

R/W

0x0E44

Module 5 Interrupt Steering 18 - Overcurrent

R/W

0x0E48

Module 5 Interrupt Steering 19 - Reserved

R/W

0x0E4C

Module 5 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0E5C to 0x0E68

Module 5 Interrupt Steering 21-27 - Reserved

R/W

0x0E6C

Module 5 Interrupt Steering 28 - Inter-FPGA R/W

0x0E70 to 0x0E7C

0x0F00

Module 6 Interrupt Vector 1 - BIT

R/W

0x0F04

Module 6 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0F08

Module 6 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0F0C

Module 6 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0F10

Module 6 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0F14

Module 6 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0F18

Module 6 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0F1C

Module 6 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0F20

Module 6 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0F24 to 0x0F40

Module 6 Interrupt Vector 10-17 - Reserved

R/W

0x0F44

Module 6 Interrupt Vector 18 - Overcurrent

R/W

0x0F48

Module 6 Interrupt Vector 19 - Reserved

R/W

0x0F4C

Module 6 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0F5C to 0x0F68

Module 6 Interrupt Vector 21-27 - Reserved

R/W

0x0F6C

Module 6 Interrupt Vector 28 - Inter-FPGA

R/W

0x0F70 to 0x0F7C

Module 6 Interrupt Vector 29-32 - Reserved

R/W

0x1000

Module 6 Interrupt Steering 1 - BIT

R/W

0x1004

Module 6 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0E08

Module 6 Interrupt Steering 3 - FIFO Ch 2

R/W

0x100C

Module 6 Interrupt Steering 4 - FIFO Ch 3

R/W

0x1010

Module 6 Interrupt Steering 5 - FIFO Ch 4

R/W

0x1014

Module 6 Interrupt Steering 6 - FIFO Ch 5

R/W

0x1018

Module 6 Interrupt Steering 7 - FIFO Ch 6

R/W

0x101C

Module 6 Interrupt Steering 8 - FIFO Ch 7

R/W

0x1020

Module 6 Interrupt Steering 9 - FIFO Ch 8

R/W

0x1024 to 0x1040

Module 6 Interrupt Steering 10-17 - Reserved

R/W

0x1044

Module 6 Interrupt Steering 18 - Overcurrent

R/W

0x1048

Module 6 Interrupt Steering 19 - Reserved

R/W

0x104C

Module 6 Interrupt Steering 20 - ExtPwrLoss

R/W

0x105C to 0x1068

Module 6 Interrupt Steering 21-27 - Reserved

R/W

0x106C

Module 6 Interrupt Steering 28 - Inter-FPGA

R/W

0x1070 to 0x107C

Module 6 Interrupt Steering 29-32 - Reserved

R/W

Threshold Detect Programming Registers

All A/D Modules

0x1980

Threshold Detect Level 1 Ch 1**

R/W

0x1984

Threshold Detect Level 1 Ch 2**

R/W

0x1988

Threshold Detect Level 1 Ch 3**

R/W

0x198C

Threshold Detect Level 1 Ch 4**

R/W

0x1990

Threshold Detect Level 1 Ch 5**

R/W

0x1994

Threshold Detect Level 1 Ch 6**

R/W

0x1998

Threshold Detect Level 1 Ch 7**

R/W

0x199C

Threshold Detect Level 1 Ch 8**

R/W

0x19A0

Threshold Detect Level 1 Ch 9**

R/W

0x19A4

Threshold Detect Level 1 Ch 10**

R/W

0x19A8

Threshold Detect Level 1 Ch 11**

R/W

0x19AC

Threshold Detect Level 1 Ch 12**

R/W

0x1A00

Threshold Detect Level 1 Hysteresis Ch 1**

R/W

0x1A04

Threshold Detect Level 1 Hysteresis Ch 2**

R/W

0x1A08

Threshold Detect Level 1 Hysteresis Ch 3**

R/W

0x1A0C

Threshold Detect Level 1 Hysteresis Ch 4**

R/W

0x1A10

Threshold Detect Level 1 Hysteresis Ch 5**

R/W

0x1A14

Threshold Detect Level 1 Hysteresis Ch 6**

R/W

0x1A18

Threshold Detect Level 1 Hysteresis Ch 7**

R/W

0x1A1C

Threshold Detect Level 1 Hysteresis Ch 8**

R/W

0x1A20

Threshold Detect Level 1 Hysteresis Ch 9**

R/W

0x1A24

Threshold Detect Level 1 Hysteresis Ch 10**

R/W

0x1A28

Threshold Detect Level 1 Hysteresis Ch 11**

R/W

0x1A2C

Threshold Detect Level 1 Hysteresis Ch 12**

R/W

AD4-AD6, ADE-ADF

0x19B0

Threshold Detect Level 1 Ch 13**

R/W

0x19B4

Threshold Detect Level 1 Ch 14**

R/W

0x19B8

Threshold Detect Level 1 Ch 15**

R/W

0x19BC

Threshold Detect Level 1 Ch 16**

R/W

0x1A30

Threshold Detect Level 1 Hysteresis Ch 13**

R/W

0x1A34

Threshold Detect Level 1 Hysteresis Ch 14**

R/W

0x1A38

Threshold Detect Level 1 Hysteresis Ch 15**

R/W

0x1A3C

Threshold Detect Level 1 Hysteresis Ch 16**

R/W

0x1A80

Threshold Detect Level 2 Ch 1**

R/W

0x1A84

Threshold Detect Level 2 Ch 2**

R/W

0x1A88

Threshold Detect Level 2 Ch 3**

R/W

0x1A8C

Threshold Detect Level 2 Ch 4**

R/W

0x1A90

Threshold Detect Level 2 Ch 5**

R/W

0x1A94

Threshold Detect Level 2 Ch 6**

R/W

0x1A98

Threshold Detect Level 2 Ch 7**

R/W

0x1A9C

Threshold Detect Level 2 Ch 8**

R/W

0x1AA0

Threshold Detect Level 2 Ch 9**

R/W

0x1AA4

Threshold Detect Level 2 Ch 10**

R/W

0x1AA8

Threshold Detect Level 2 Ch 11**

R/W

0x1AAC

Threshold Detect Level 2 Ch 12**

R/W

0x1B00

Threshold Detect Level 2 Hysteresis Ch 1**

R/W

0x1B04

Threshold Detect Level 2 Hysteresis Ch 2**

R/W

0x1B08

Threshold Detect Level 2 Hysteresis Ch 3**

R/W

0x1B0C

Threshold Detect Level 2 Hysteresis Ch 4**

R/W

0x1B10

Threshold Detect Level 2 Hysteresis Ch 5**

R/W

0x1B14

Threshold Detect Level 2 Hysteresis Ch 6**

R/W

0x1B18

Threshold Detect Level 2 Hysteresis Ch 7**

R/W

0x1B1C

Threshold Detect Level 2 Hysteresis Ch 8**

R/W

0x1B20

Threshold Detect Level 2 Hysteresis Ch 9**

R/W

0x1B24

Threshold Detect Level 2 Hysteresis Ch 10**

R/W

0x1B28

Threshold Detect Level 2 Hysteresis Ch 11**

R/W

0x1B2C

Threshold Detect Level 2 Hysteresis Ch 12**

R/W

AD4-AD6, ADE-ADF

0x1AB0

Threshold Detect Level 2 Ch 13**

R/W

0x1AB4

Threshold Detect Level 2 Ch 14**

R/W

0x1AB8

Threshold Detect Level 2 Ch 15**

R/W

0x1ABC

Threshold Detect Level 2 Ch 16**

R/W

0x1B30

Threshold Detect Level 2 Hysteresis Ch 13**

R/W

0x1B34

Threshold Detect Level 2 Hysteresis Ch 14**

R/W

0x1B38

Threshold Detect Level 2 Hysteresis Ch 15**

R/W

0x1B3C

Threshold Detect Level 2 Hysteresis Ch 16**

R/W

0x1C80

Threshold Detect Control

R/W

All A/D Modules

0x1B80

Low Saturation Value Ch 1**

R/W

0x1B84

Low Saturation Value Ch 2**

R/W

0x1B88

Low Saturation Value Ch 3**

R/W

0x1B8C

Low Saturation Value Ch 4**

R/W

0x1B90

Low Saturation Value Ch 5**

R/W

0x1B94

Low Saturation Value Ch 6**

R/W

0x1B98

Low Saturation Value Ch 7**

R/W

0x1B9C

Low Saturation Value Ch 8**

R/W

0x1BA0

Low Saturation Value Ch 9**

R/W

0x1BA4

Low Saturation Value Ch 10**

R/W

0x1BA8

Low Saturation Value Ch 11**

R/W

0x1BAC

Low Saturation Value Ch 12**

R/W

0x1C00

High Saturation Value Ch 1**

R/W

0x1C04

High Saturation Value Ch 2**

R/W

0x1C08

High Saturation Value Ch 3**

R/W

0x1C0C

High Saturation Value Ch 4**

R/W

0x1C10

High Saturation Value Ch 5**

R/W

0x1C14

High Saturation Value Ch 6**

R/W

0x1C18

High Saturation Value Ch 7**

R/W

0x1C1C

High Saturation Value Ch 8**

R/W

0x1C20

High Saturation Value Ch 9**

R/W

0x1C24

High Saturation Value Ch 10**

R/W

0x1C28

High Saturation Value Ch 11**

R/W

0x1C2C

High Saturation Value Ch 12**

R/W

AD4-AD6, ADE-ADF

0x1BB0

Low Saturation Value Ch 13**

R/W

0x1BB4

Low Saturation Value Ch 14**

R/W

0x1BB8

Low Saturation Value Ch 15**

R/W

0x1BBC

Low Saturation Value Ch 16**

R/W

0x1C30

Low Saturation Value Ch 13**

R/W

0x1C34

Low Saturation Value Ch 14**

R/W

0x1C38

Low Saturation Value Ch 15**

R/W

0x1C3C

Low Saturation Value Ch 16**

R/W

Status Registers

Threshold

0x0940

Dynamic Status

R

0x0944

Latched Status*

R/W

0x0948

Interrupt Enable

R/W

0x094C

Set Edge/Level Interrupt

R/W

0x1C90

Saturation Control

R/W

Saturation

0x0960

Dynamic Status

R

0x0964

Latched Status*

R/W

0x0968

Interrupt Enable

R/W

0x096C

Set Edge/Level Interrupt

R/W

Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Memory Space and these addresses are absolute based on the module slot position. In other words, do not apply the Module Address offset to these addresses.

0x0550

Module 1 Interrupt Vector 21 - Threshold

R/W

0x0558

Module 1 Interrupt Vector 23 - Saturation

R/W

0x0750

Module 2 Interrupt Vector 21 - Threshold

R/W

0x0758

Module 2 Interrupt Vector 23 - Saturation

R/W

|0x0950 |Module 3 Interrupt Vector 21 - Threshold |R/W

|0x0958 |Module 3 Interrupt Vector 23 - Saturation |R/W

0x0B50

Module 4 Interrupt Vector 21 - Threshold

R/W

0x0B58

Module 4 Interrupt Vector 23 - Saturation

R/W

|0x0D50 |Module 5 Interrupt Vector 21 - Threshold |R/W

|0x0D58 |Module 5 Interrupt Vector 23 - Saturation |R/W

0x0F50

Module 6 Interrupt Vector 21 - Threshold

R/W

0x0F58

Module 6 Interrupt Vector 23 - Saturation

R/W

|0x0650 |Module 1 Interrupt Steering 21 - Threshold |R/W

|0x0658 |Module 1 Interrupt Steering 23 - Saturation |R/W

0x0850

Module 2 Interrupt Steering 21 - Threshold

R/W

0x0858

Module 2 Interrupt Steering 23 - Saturation

R/W

|0x0A50 |Module 3 Interrupt Steering 21 - Threshold |R/W

|0x0A58 |Module 3 Interrupt Steering 23 - Saturation |R/W

0x0C50

Module 4 Interrupt Steering 21 - Threshold

R/W

0x0C58

Module 4 Interrupt Steering 23 - Saturation

R/W

|0x0D50 |Module 5 Interrupt Steering 21 - Threshold |R/W

|0x0D58 |Module 5 Interrupt Steering 23 - Saturation |R/W

0x1050

Module 6 Interrupt Steering 21 - Threshold

R/W

0x1058

Module 6 Interrupt Steering 23 - Saturation

R/W

moduleCommonRegistersBoilerplate

Integer Mode Programming

The following registers should be configured as follows:

Register

Value

Description

Voltage Range

0x4

±10 volts

Enable Floating Point

0

Disable for Floating Point Mode

Note: LSB for Bipolar ±10-volt range:

LSB = 10/0x00007FFF = 10/32767=305uV

AC Value Integer)

DAC Voltage Output

.000 of FS = 0x0000 7FFF

32767 * LSB = 10.0 volts

0.5 of FS = 0x0000 4000

16384 * LSB = 5.0 volts

0.0 of FS = 0x0000 0000

0 * LSB = 0.0 volts

-0.5 of FS = 0xFFFF C000

-16384 * LSB = -5.0 volts

-1.0 of FS = 0xFFFF 8000

-32768 * LSB = -10. volts

Floating Point Mode Voltage Programming

The following registers should be configured as follows:

Register

Value

Description

Voltage Range

0x4

±10 volts

Enable Floating Point

1

Enable for Floating Point Mode

Floating Point Scale

0.1

Scale = 1 / (Full Range) = 1 / 10.0 = 0.1

Floating Point Offset

0.0

No Offset

Note: LSB for Bipolar ±10-volt range: LSB = 10/0x00007FFF = 10/32767=305uV

DAC Value (volts) (Floating Point)

DAC Value (Calculated by Module)

DAC Value (Integer)

DAC Voltage Output

10.0

(10.0 + 0.0) *0.1 = 1 (FS)

FS = 0x0000 7FFF

32767 * LSB = 10.0 volts

5.0

(5.0 + 0.0) *0.1 = 0.5 of FS

0.5 of FS = 0x0000 4000

16384 * LSB = 5.0 volts

0.0

(0.0 + 0.0) *0.1 = 0.0 of FS

0.0 of FS = 0x0000 0000

0 * LSB = 0.0 volts

-5.0

(-5.0 + 0.0) *0.1 = -0.5 of FS

-0.5 of FS = 0xFFFF C000

-16384 * LSB = -5.0 volts

-10.0

(-10.0 + 0.0) *0.1 = -1 (-FS)

-FS = 0xFFFF 8000

-32768 * LSB = -10. volts

Floating Point Mode Engineering Units Programming

Example #1:

An application wants to associate -10 to 10 volts to -5 to 5 inches.

The following registers should be configured as follows:

Register

Value

Description

Voltage Range

0x4 ±10 volts

Enable Floating Point

1

Enable for Floating Point Mode

Floating Point Scale

0.2

Scale = 1 / inches range = 1 / 5 = 0.2

Floating Point Offset

Note: LSB for Bipolar ±10-volt range: LSB = 10/0x00007FFF = 10/32767=305uV

DAC Value (volts) (Floating Point)

DAC Value (Calculated by Module)

DAC Value (Integer)

DAC Voltage Output

5.0

(5.0 + 0.0) * 0.2 = 1 (FS)

FS = 0x0000 7FFF

32767 * LSB = 10.0 volts

2.5

(2.5 + 0.0) * 0.2 = .5 of FS

0.5 of FS = 0x0000 4000

16384 * LSB = 5.0 volts

0.0

(0.0 + 0.0) * 0.2 = 0

0.0 of FS = 0x0000 0000

0 * LSB = 0.0 volts

-2.5

(-2.5 + 0.0) * 0.2 = -.5 of FS

-0.5 of FS = 0xFFFF C000

-16384 * LSB = -5.0 volts

-5.0

(-5.0 + 0.0) * 0.2 = -1 (-FS)

-FS = 0xFFFF 8000

-32768 * LSB = -10. volts

Example #2:

An application wants to associate 0 to 10 volts to 0 to 50 feet with a bias of 0.5 feet (in other words 0.5 feet is equivalent to 0 volts).

The following registers should be configured as follows:

Register

Value

Description

Voltage Range

0x1

Unipolar 0-10 volts

Enable Floating Point

1

Enable for Floating Point Mode

Floating Point Scale

0.02

Scale = 1 / feet range = 1 / 50 = 0.02

Floating Point Offset

-0.50

Bias (0.5 feet) that is equivalent to 0 volts

The following are sample outputs:

Note: LSB for Unipolar 10-volt range: LSB = 10/0x0000FFFF = 10/65535

DAC Value (volts) (Floating Point)

DAC Value (Calculated by Module)

DAC Value (Integer)

DAC Voltage Output

50.00

(50.0 - 0.50) * 0.02 = 0.99 of FS

0.99 of FS = 0x0000 FD70

64880 * LSB = 9.90 volts

25.00

(25.00 - 0.50) * 0.02 = 0.49 of FS

0.49 of FS = 0x0000 7D70

32112 * LSB = 4.90 volts

5.50

(5.50 - 0.50) * 0.02 = 0.10 of FS

0.10 of FS = 0x0000 199A

6554 * LSB = 1.00 volts

0.50

(0.50 - 0.50) * 0.02 = 0.00 of FS

0.00 of FS = 0x0000 0000

0 * LSB = 0.0 volts

PIN-OUT DETAILS

Pin-out details (for reference) are shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Motherboard Operational Manuals.

Module Signal (Ref Only)

8 CH D/A (DA2) & 8 CH A/D (ADE) (CME)

8 CH D/A (DA2) & 8 CH A/D (ADF) (CMF)

DATIO1

IN_CH01+

IN_CH01+

DATIO2

IN_CH01-

IN_CH01-

DATIO3

IN_CH02+

IN_CH02+

DATIO4

IN_CH02-

IN_CH02-

DATIO5

IN_CH04+

IN_CH04+

DATIO6

IN_CH04-

IN_CH04-

DATIO7

IN_CH05+

IN_CH05+

DATIO8

IN_CH05-

IN_CH05-

DATIO9

IN_CH06+

IN_CH06+

DATIO10

IN_CH06-

IN_CH06-

DATIO11

IN_CH08+ IN_CH08+

DATIO12

IN_CH08-(GND-CMRP)

IN_CH08-

DATIO13

OUT_CH1

OUT_CH1

DATIO14

OUT_CH2

OUT_CH2

DATIO15

OUT_CH3

OUT_CH3

DATIO16

OUT_CH4

OUT_CH4

DATIO17

GND-DA

GND-DA

DATIO18

GND-DA

GND-DA

DATIO19

OUT_CH5

OUT_CH5

DATIO20

OUT_CH6

OUT_CH6

DATIO21

OUT_CH7

OUT_CH7

DATIO22

OUT_CH8

OUT_CH8

DATIO23

GND-DA

GND-DA

DATIO24

GND-DA

GND-DA

DATIO25

IN_CH03+

IN_CH03+

DATIO26

IN_CH03-

IN_CH03-

DATIO27

IN_CH07+

IN_CH07+

DATIO28

IN_CH07-

IN_CH07-

DATIO29

DATIO30

DATIO31

GND-DA

GND-DA

DATIO32

GND-DA

GND-DA

DATIO33

EXT-SYNC+

EXT-SYNC+

DATIO34

EXT-SYNC-

EXT-SYNC-

DATIO35

DATIO36

DATIO37

DATIO38

DATIO39

STATUS AND INTERRUPTS

Status registers indicate the detection of faults or events. The status registers can be channel bit-mapped or event bit-mapped. An example of a channel bit-mapped register is the BIT status register, and an example of an event bit-mapped register is the FIFO status register.

For those status registers that allow interrupts to be generated upon the detection of the fault or the event, there are four registers associated with each status: Dynamic, Latched, Interrupt Enabled, and Set Edge/Level Interrupt.

Dynamic Status: The Dynamic Status register indicates the current condition of the fault or the event. If the fault or the event is momentary, the contents in this register will be clear when the fault or the event goes away. The Dynamic Status register can be polled, however, if the fault or the event is sporadic, it is possible for the indication of the fault or the event to be missed.

Latched Status: The Latched Status register indicates whether the fault or the event has occurred and keeps the state until it is cleared by the user. Reading the Latched Status register is a better alternative to polling the Dynamic Status register because the contents of this register will not clear until the user commands to clear the specific bit(s) associated with the fault or the event in the Latched Status register. Once the status register has been read, the act of writing a 1 back to the applicable status register to any specific bit (channel/event) location will “clear” the bit (set the bit to 0). When clearing the channel/event bits, it is strongly recommended to write back the same bit pattern as read from the Latched Status register. For example, if the channel bit-mapped Latched Status register contains the value 0x0000 0005, which indicates fault/event detection on channel 1 and 3, write the value 0x0000 0005 to the Latched Status register to clear the fault/event status for channel 1 and 3. Writing a “1” to other channels that are not set (example 0x0000 000F) may result in incorrectly “clearing” incoming faults/events for those channels (example, channel 2 and 4).

Interrupt Enable: If interrupts are preferred upon the detection of a fault or an event, enable the specific channel/event interrupt in the Interrupt Enable register. The bits in Interrupt Enable register map to the same bits in the Latched Status register. When a fault or event occurs, an interrupt will be fired. Subsequent interrupts will not trigger until the application acknowledges the fired interrupt by clearing the associated channel/event bit in the Latched Status register. If the interruptible condition is still persistent after clearing the bit, this may retrigger the interrupt depending on the Edge/Level setting.

Set Edge/Level Interrupt: When interrupts are enabled, the condition on retriggering the interrupt after the Latch Register is “cleared” can be specified as “edge” triggered or “level” triggered. Note, the Edge/Level Trigger also affects how the Latched Register value is adjusted after it is “cleared” (see below).

  • Edge triggered: An interrupt will be retriggered when the Latched Status register change from low (0) to high (1) state. Uses for edgetriggered interrupts would include transition detections (Low-to-High transitions, High-to-Low transitions) or fault detections. After “clearing” an interrupt, another interrupt will not occur until the next transition or the re-occurrence of the fault again.

  • Level triggered: An interrupt will be generated when the Latched Status register remains at the high (1) state. Level-triggered interrupts are used to indicate that something needs attention.

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed with a unique number/identifier defined by the user such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Interrupt Trigger Types

In most applications, limiting the number of interrupts generated is preferred as interrupts are costly, thus choosing the correct Edge/Level interrupt trigger to use is important.

Example 1: Fault detection

This example illustrates interrupt considerations when detecting a fault like an “open” on a line. When an “open” is detected, the system will receive an interrupt. If the “open” on the line is persistent and the trigger is set to “edge”, upon “clearing” the interrupt, the system will not regenerate another interrupt. If, instead, the trigger is set to “level”, upon “clearing” the interrupt, the system will re-generate another interrupt. Thus, in this case, it will be better to set the trigger type to “edge”.

Example 2: Threshold detection

This example illustrates interrupt considerations when detecting an event like reaching or exceeding the “high watermark” threshold value. In a communication device, when the number of elements received in the FIFO reaches the high-watermark threshold, an interrupt will be generated. Normally, the application would read the count of the number of elements in the FIFO and read this number of elements from the FIFO. After reading the FIFO data, the application would “clear” the interrupt. If the trigger type is set to “edge”, another interrupt will be generated only if the number of elements in FIFO goes below the “high watermark” after the “clearing” the interrupt and then fills up to reach the “high watermark” threshold value. Since receiving communication data is inherently asynchronous, it is possible that data can continue to fill the FIFO as the application is pulling data off the FIFO. If, at the time the interrupt is “cleared”, the number of elements in the FIFO is at or above the “high watermark”, no interrupts will be generated. In this case, it will be better to set the trigger type to “level”, as the purpose here is to make sure that the FIFO is serviced when the number of elements exceeds the high watermark threshold value. Thus, upon “clearing” the interrupt, if the number of elements in the FIFO is at or above the “high watermark” threshold value, another interrupt will be generated indicating that the FIFO needs to be serviced.

Dynamic and Latched Status Registers Examples

The examples in this section illustrate the differences in behavior of the Dynamic Status and Latched Status registers as well as the differences in behavior of Edge/Level Trigger when the Latched Status register is cleared.

Status and Interrupts Fig1

Figure 1. Example of Module’s Channel-Mapped Dynamic and Latched Status States

No Clearing of Latched Status

Clearing of Latched Status (Edge-Triggered)

Clearing of Latched Status (Level-Triggered)

Time

Dynamic Status

Latched Status

Action

Latched Status

Action

Latched

T0

0x0

0x0

Read Latched Register

0x0

Read Latched Register

0x0

T1

0x1

0x1

Read Latched Register

0x1

0x1

Write 0x1 to Latched Register

Write 0x1 to Latched Register

0x0

0x1

T2

0x0

0x1

Read Latched Register

0x0

Read Latched Register

0x1

Write 0x1 to Latched Register

0x0

T3

0x2

0x3

Read Latched Register

0x2

Read Latched Register

0x2

Write 0x2 to Latched Register

Write 0x2 to Latched Register

0x0

0x2

T4

0x2

0x3

Read Latched Register

0x1

Read Latched Register

0x3

Write 0x1 to Latched Register

Write 0x3 to Latched Register

0x0

0x2

T5

0xC

0xF

Read Latched Register

0xC

Read Latched Register

0xE

Write 0xC to Latched Register

Write 0xE to Latched Register

0x0

0xC

T6

0xC

0xF

Read Latched Register

0x0

Read Latched

0xC

Write 0xC to Latched Register

0xC

T7

0x4

0xF

Read Latched Register

0x0

Read Latched Register

0xC

Write 0xC to Latched Register

0x4

T8

0x4

0xF

Read Latched Register

0x0

Read Latched Register

0x4

Interrupt Examples

The examples in this section illustrate the interrupt behavior with Edge/Level Trigger.

Status and Interrupts Fig2

Figure 2. Illustration of Latched Status State for Module with 4-Channels with Interrupt Enabled

Time

Latched Status (Edge-Triggered – Clear Multi-Channel)

Latched Status (Edge-Triggered – Clear Single Channel)

Latched Status (Level-Triggered – Clear Multi-Channel)

Action

Latched

Action

Latched

Action

Latched

T1 (Int 1)

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Write 0x1 to Latched Register

Write 0x1 to Latched Register

Write 0x1 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear until T2.

0x1

T3 (Int 2)

Interrupt Generated Read Latched Registers

0x2

Interrupt Generated Read Latched Registers

0x2

Interrupt Generated Read Latched Registers

0x2

Write 0x2 to Latched Register

Write 0x2 to Latched Register

Write 0x2 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.

0x2

T4 (Int 3)

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x3

Write 0x1 to Latched Register

Write 0x1 to Latched Register

Write 0x3 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x3 is reported in Latched Register until T5.

0x3

Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.

0x2

T6 (Int 4)

Interrupt Generated Read Latched Registers

0xC

Interrupt Generated Read Latched Registers

0xC

Interrupt Generated Read Latched Registers

0xE

Write 0xC to Latched Register

Write 0x4 to Latched Register

Write 0xE to Latched Register

0x0

Interrupt re-triggers Write 0x8 to Latched Register

0x8

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xE is reported in Latched Register until T7.

0xE

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xC is reported in Latched Register until T8.

0xC

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x4 is reported in Latched Register always.

0x4

Analog-to-Digital

Threshold and Saturation Programming

THRESHOLD AND SATURATION CAPABILITY

THRESHOLD AND SATURATION CAPABILITY The Threshold and Saturation Capability is available on the following modules:

Analog-to-Digital (A/D) Modules

AD1 – 12 Channels Analog-to-Digital (Voltage Input Only) (±10 to ±1.25 VDC FSR)

AD2 – 12 Channels Analog-to-Digital (Voltage Input Only) (±100 to ±12.5 VDC FSR)

AD3 – 12 Channels Analog-to-Digital (Current Input Only) (±25 mA FSR)

AD4 – 16 Channels Analog-to-Digital (±10.0 to ±1.25 VDC or ±25 mA FSR)

AD5 – 16 Channels Analog-to-Digital (±50.0 to ±6.25 VDC FSR)

AD6 – 16 Channels Analog-to-Digital (±100 to ±12.5 VDC FSR)

ADE – 16 Channels Analog-to-Digital (Voltage Input Only) (±10 to ±0.625 VDC FSR)

ADF – 16 Channels Analog-to-Digital (Voltage Input Only) (±100 to ±6.25 VDC FSR)

PRINCIPLE OF OPERATION

The AD modules provide the ability to monitor the acquired data and set a status when the specific thresholds are reached.

Threshold Detect

There are two thresholds that can be independently programmed on the A/D modules. These thresholds are used to monitor the acquired data and set a status when the specified thresholds are reached. A configurable hysteresis may also be set to determine when the Threshold Detect registers are cleared. The threshold detection can be configured as a FIFO trigger to capture data based on a specified event. Refer to Figure 1 and Figure 2 for illustrations for Threshold Detect Programming.

CME CMF Img08
CME CMF Img09

Saturation Programming

A low and high saturation setting that can be independently programmed on the A/D modules. These saturation values are used to monitor the acquired data and set a status when the specified saturation is reached as well as setting the A/D reading to the saturation value. Saturation programming can be used to prevent the A/D reading from exceeding the saturation value. Refer to Figure 3 for illustrations of Saturation Programming.

CME CMF Img010

REGISTER DESCRIPTIONS

The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, and a description of the function.

Engineering Scaling Conversion Registers

The D/A function Data, Voltage and Current Measurement registers can be programmed to be utilized as an IEEE 754 single-precision floatingpoint value or as a 32-bit integer value.

Enable Floating Point Mode

Function: Sets all channels for floating point mode or integer module.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: R/W

Initialized Value: 0 (Integer mode)

Operational Settings: Set bit to 1 to enable Floating Point Mode and 0 for Integer Mode.

Floating Point Offset

Function: Single 32-bit register that sets the floating-point offset to add to D/A output.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: Refer to section Appendix B: Integer/Floating Point Mode Programming for Integer and Floating Point examples.

Floating Point Scale

Function: Single 32-bit register that sets the floating-point scale to multiple to the D/A output.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A Read/Write: R/W

Initialized Value: 0.0

Operational Settings: When changing the Voltage Range, the Floating Point Scale needs to be adjusted in order for the Wrap Voltage and Wrap Current floating point representation to be scaled correctly.

Floating Point State

Function: Indicates whether the module’s internal processing is converting the register values and internal values to the binary representation of the mode selected (Integer or Floating Point).

Type: unsigned binary word (32-bit)

Data Range: 0 to 1 Read/Write: R

Initialized Value: 0

Operational Settings: Indicates the whether the module registers are in Integer (0) or Floating Point Mode (1). When the Enable Floating Point Mode is modified, the application must wait until this register’s value matches the requested mode before changing the values of the configuration and control registers with the values in the units specified (Integer or Floating Point).

Floating Point State

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Background BIT Threshold Programming Registers

The Background BIT Threshold register provides the ability to specify the minimum time before the BIT fault is reported in the BIT Status registers. The BIT Clear Count register provides the ability to reset the BIT counter used in CBIT.

Background BIT Threshold

Type: unsigned binary word (32-bit)

Data Range: 1 ms to 2^32 ms

Read/Write: R/W

Initialized Value: 5 (5 ms)

Operational Settings: The interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a “count”, the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold “count” based on the BIT interval for that module.

BIT Count Clear

Function: Resets the CBIT internal circuitry and count mechanism. Set the bit corresponding to the channel you want to clear.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: W

Initialized Value: 0

Operational Settings: Set bit to 1 for channel to resets the CBIT mechanisms. Bit is self-clearing.

NOTE: BIT Count Clear is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

BIT Clear Count

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

== Module Common Registers

Refer to “Module Common Registers Module Manual” for the register descriptions.

Status and Interrupt Registers

The Digital-to-Analog function provides status registers for BIT, Overcurrent, External Power Under Voltage, Inter-FPGA Failure, and FIFO.

Channel Status Enable

Function: Determines whether to update the status for the channels. This feature can be used to “mask” status bits of unused channels in status registers that are bitmapped by channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF (Channel Status)

Read/Write: R/W

Initialized Value: 0x0000 FFFF

Operational Settings: When the bit corresponding to a given channel in the Channel Status Enable register is not enabled (0) the status will be masked and report “0” or “no failure”. This applies to all statuses that are bitmapped by channel (BIT Status, Open/Over-Voltage Status, and Front-end Amplifier Failure Status).

NOTE: Channel Status Enable is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

NOTE: Background BIT will continue to run even if the Channel Status Enable is set to ‘0'.

Channel Status Enable

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

BIT Dynamic Status BIT Latched Status BIT Interrupt Enable BIT Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

Function: Reports the corresponding bit associated with the channel’s BIT error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt) Initialized Value: 0

Note: BIT Status is part of background testing and the status register may be checked or polled at any given time.

Overcurrent Status

There are four registers associated with the Overcurrent Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

Overcurrent Dynamic Status Overcurrent Latched Status Overcurrent Interrupt Enable Overcurrent Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Function: Reports the corresponding bit associated with the channel’s Overcurrent error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt) Initialized Value: 0

External Power Under Voltage Status

There are four registers associated with the External Power Under Voltage Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

D0 = +12V External Power Under Voltage

D1= -12V External Power Under Voltage

External Power Under Voltage Dynamic Status External Power Under Voltage Latched Status External Power Under Voltage Interrupt Enable External Power Under Voltage Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-12V

+12V

Function: Reports the corresponding bit associated with the channel’s External Power Under Voltage error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0003

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Inter-FPGA Failure Status

Data is periodically transferred between the Lattice FPGA and the Xilinx FPGA. A CRC value is calculated and verified with each data transfer. A CRC error flag is sent from the Lattice FPGA to the Xilinx FPGA if a CRC error is detected. The Xilinx FPGA contains a counter that will increase by two when a CRC error is flagged and decremented by one when there is no CRC error. If the counter reaches ten, the Xilinx FPGA will set the Inter-FPGA Failure status bit and shut down the isolated power supply. To recover from an Inter-FPGA Failure, the module needs to be reset and re-initialized.

There are four registers associated with the Inter-FPGA Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. 0 = Normal; 0xFFFF = Inter-FPGA Communication Failure. The status represents the status for all channels on the module.

NOTE: Inter-FPGA Failure Status is a shared register between the ADE/ADF and DA2 functions. Bits D7:D0 are dedicated to the ADE/ADF functions, and bits D15:D8 are dedicated to the DA2 function.

Inter-FPGA Failure Dynamic Status Inter-FPGA Failure Latched Status Inter-FPGA Failure Interrupt Enable Inter-FPGA Failure Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

DA Ch8

DA Ch7

DA Ch6

DA Ch5

DA Ch4

DA Ch3

DA Ch2

DA Ch1

AD Ch8

AD Ch7

AD Ch6

AD Ch5

AD Ch4

AD Ch3

AD Ch2

AD Ch1

Function: Sets the corresponding bit associated with the channel’s Inter-FPGA Failure error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x8000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

FIFO Status

There are four registers associated with the FIFO Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. D0-D5 is used to show the different conditions of the buffer.

Description

Configurable?

D0

Almost Full; 1 when FIFO Count >= “FIFO Almost Full” register

Yes

D1

Almost Empty; 1 when FIFO Count ⇐ “FIFO Almost Empty” register

Yes

D2

High Watermark; 1 when FIFO Count >= “FIFO High Watermark” register

Yes

D3

Low Watermark; 1 when FIFO Count ⇐ “FIFO Low Watermark” register

Yes

D4

Empty; 1 when FIFO Count = 0

No

D5

Full; 1 when FIFO Count = 1 Mega Words (0x000F FFFF)

No

FIFO Dynamic Status FIFO Latched Status FIFO Interrupt Enable FIFO Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

D

D

D

D

D

D

Function: Sets the corresponding bit associated with the FIFO status type; there are separate registers for each channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 003F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 1 (Empty) Note:

Shown below is an example of interrupts generated for the High Watermark.
As shown, the interrupt is generated as the FIFO Word Count crosses the
High Watermark.
The interrupt will not be generated a second time until the count goes
below the watermark and then above it again.
CME CMF Img05

Interrupt Steering and Vector

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Note: The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Direct Interrupt to VME

1

Direct Interrupt to ARM Processor (via SerDes) (Custom App on ARM or NAI Ethernet Listener App)

2

Direct Interrupt to PCIe Bus

5

Direct Interrupt to cPCI Bus

6

The following registers should be configured as follows:

Register

Value

Description

Voltage Range

0x4

±10 volts

Enable Floating Point

1

Enable for Floating Point Mode

Floating Point Scale

0.1

Scale = 1 / (Full Range) = 1 / 10.0 = 0.1

Floating Point Offset

0.0

No Offset

Note: LSB for Bipolar ±10-volt range: LSB = 10/0x00007FFF = 10/32767=305uV

DAC Value (volts) (Floating Point)

DAC Value (Calculated by Module)

DAC Value (Integer)

DAC Voltage Output

10.0

(10.0 + 0.0) *0.1 = 1 (FS)

FS = 0x0000 7FFF

32767 * LSB = 10.0 volts

5.0

(5.0 + 0.0) *0.1 = 0.5 of FS

0.5 of FS = 0x0000 4000

16384 * LSB = 5.0 volts

0.0

(0.0 + 0.0) *0.1 = 0.0 of FS

0.0 of FS = 0x0000 0000

0 * LSB = 0.0 volts

-5.0

(-5.0 + 0.0) *0.1 = -0.5 of FS

-0.5 of FS = 0xFFFF C000

-16384 * LSB = -5.0 volts

-10.0

(-10.0 + 0.0) *0.1 = -1 (-FS)

-FS = 0xFFFF 8000

-32768 * LSB = -10. volts

The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, and a description of the function.

Threshold Detect Programming Registers

There are two threshold and hysteresis registers that can be independently programmed on the A/D modules.

Threshold Detect Level

The Threshold Detect Level registers sets the first and second threshold level values.

Threshold Detect Level 1

Function: Sets the first threshold level value.

Type: signed binary word (32-bit) (Integer Mode) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Voltage Threshold Level values are dependent on Polarity and Range settings for the channel.

*Enable Floating Point Mode*: 0 (Integer Mode)
 Unipolar: (*AD4-AD6, ADE-ADF)* 0x0000 0000 to 0x0000 FFFF; *(AD1-AD3):
 *0x0000 0000 to 0x00FF FFFF        Bipolar (2's complement.
 sign extended to 32 bits): *(AD4-AD6, ADE-ADF) *0xFFFF 8000 to 0x0000 7FFF
*(AD1-AD3)*: 0xFF80 0000 to 0x007F FFFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
     Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 90% of full scale (bipolar)

Threshold Detect Level 2

Function: Sets the second threshold level value.

Type: signed binary word (32-bit) (Integer Mode) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Voltage Threshold Level values are dependent on Polarity and Range settings for the channel.

  *Enable Floating Point Mode*: 0 (Integer Mode) Unipolar: *(AD4-AD6,
      ADE-ADF)* 0x0000 0000 to 0x0000 FFFF; *(AD1-AD3)* : 0x0000 0000 to
      0x00FF FFFF        Bipolar (2's complement.
      sign extended to 32 bits): *(AD4-AD6, ADE-ADF)* 0xFFFF 8000 to 0x0000
      7FFF
*(AD1-AD3)*: 0xFF80 0000 to 0x007F FFFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
     Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: -90% of full scale (bipolar)

Threshold Detect Hysteresis

The Threshold Detect Hysteresis registers sets the first and second threshold hysteresis values. Note, the hysteresis value must be a positive value.

Threshold Detect Hysteresis 1

Function: Sets the first threshold hysteresis value. This value must be positive.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Voltage Threshold Hysteresis values are dependent on Polarity and Range settings for the channel.

  *Enable Floating Point Mode*: 0 (Integer Mode) Unipolar: *(AD4-AD6,
      ADE-ADF)* 0x0000 0000 to 0x0000 FFFF; *(AD1-AD3)*: 0x0000 0000 to
      0x00FF FFFF        Bipolar (2's complement.
      sign extended to 32 bits): (AD4-AD6, ADE-ADF) 0xFFFF 8000 to 0x0000
      7FFF
*(AD1-AD3)*: 0xFF80 0000 to 0x007F FFFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
     Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Threshold Detect Hysteresis 2

Function: Sets the second threshold hysteresis value. This value must be positive.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Voltage Threshold Hysteresis values are dependent on Polarity and Range settings for the channel.

  *Enable Floating Point Mode*: 0 (Integer Mode) Unipolar: *(AD4-AD6,
      ADE-ADF)* 0x0000 0000 to 0x0000 FFFF; *(AD1-AD3)*: 0x0000 0000 to
      0x00FF FFFF        Bipolar (2's complement.
      sign extended to 32 bits): *(AD4-AD6, ADE-ADF)* 0xFFFF 8000 to 0x0000
      7FFF
*(AD1-AD3)*: 0xFF80 0000 to 0x007F FFFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
     Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Threshold Detect Control

Function: Sets up detect control for the two thresholds for each channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: Set bit to 0 to detect above the threshold level. Set bit to 1 to detect below the threshold level.

Threshold Detect Control

AD1-AD3

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D AD4-AD6 and ADE-ADF

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ch16

Ch15

Ch14

Ch13

Ch12

Ch11

Ch10

Ch9

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

All A/D Modules

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

Saturation Programming Registers

A low and high saturation setting that can be independently programmed on the A/D modules.

Saturation Value

The Low Saturation Value registers sets value to report as A/D reading and sets the Saturation Status bit when the A/D data is below the low saturation value. The High Saturation Value registers sets value to report as A/D reading and sets the Saturation Status bit when the A/D data is above the high saturation value.

Low Saturation

Function: Sets the low saturation value.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

  • Data Range*: Saturation Voltage values are dependent on Polarity and Range settings for the channel.

      *Enable Floating Point Mode*: 0 (Integer Mode) Unipolar: *(AD4-AD6,
          ADE-ADF)* 0x0000 0000 to 0x0000 FFFF; *(AD1-AD3)*: 0x0000 0000 to
          0x00FF FFFF        Bipolar (2's complement.
          sign extended to 32 bits): *(AD4-AD6, ADE-ADF)* 0xFFFF 8000 to 0x0000
          7FFF
    *(AD1-AD3)*: 0xFF80 0000 to 0x007F FFFF
    *Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
         Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

High Saturation

Function: Sets the high saturation value.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range*: Saturation Voltage values are dependent on Polarity and Range
settings for the channel.
  Enable Floating Point Mode*: 0 (Integer Mode) Unipolar:* (AD4-AD6,
      ADE-ADF)* 0x0000 0000 to 0x0000 FFFF; *(AD1-AD3)*: 0x0000 0000 to
      0x00FF FFFF        Bipolar (2's complement.
      sign extended to 32 bits): -(AD4-AD6, ADE-ADF)* 0xFFFF 8000 to 0x0000
      7FFF
*(AD1-AD3)*: 0xFF80 0000 to 0x007F FFFF
*Enable Floating Point Mode*: 1 (Floating Point Mode) Single Precision
     Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Saturation Control

Function: Sets up saturation control for the two saturation levels for each channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: Set bits to 1 to enable Saturation Control. Set bits to 0 to disable Saturation Control. Each channel control consists of two bits: Low Saturation Control (‘Even' bits (B0, B2, B4,…​)) and High Saturation Control (‘Odd' bits (B1, B3, B5,…​)).

Saturation Control

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D AD4-AD6 and ADE-ADF

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ch16

Ch15

Ch14

Ch13

Ch12

Ch11

Ch10

Ch9

High

Low

High

Low

High

Low

High

Low High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

All A/D Modules

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

High

Low

High

Low

High

Low

High

Low High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

Status and Interrupt

The A/D Module provides status registers for Threshold Detect and Saturation.

Threshold Detect Status

There are four registers associated with the Threshold Detect Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

0 = Normal; 1 = Outside of threshold range. The status is created based on the values set in the Threshold Detect 1 and Threshold Detect 2 registers. Bits D0 and D1 represent if channel 1 is outside the threshold for Threshold Detect 1 and Threshold Detect 2 respectively, Bits D2 and D3 represent if channel 2 is outside the threshold for Threshold Detect 1 and Threshold Detect 2 respectively, etc. This pattern continues for all channels.

Threshold Detect Dynamic Status Threshold Detect Latched Status Threshold Detect Interrupt Enable Threshold Detect Set Edge/Level Interrupt

AD1-AD3

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D AD4-AD6 and ADE-ADF

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ch16

Ch15

Ch14

Ch13

Ch12

Ch11

Ch10

Ch9

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

All A/D Modules

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

Function: Sets the corresponding bit associated with the channel’s Threshold Detect error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x00FF FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Saturation Status

There are four registers associated with the Saturation Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

0 = Normal; 1 = Outside of saturation range. The status is created based on the values set in the Low Saturation and High Saturation registers. Bits D0 and D1 represent if channel 1 is outside the voltage for Low Saturation and High Saturation respectively, Bits D2 and D3 represent if channel 2 is outside the voltage for Low Saturation and High Saturation respectively, etc. This pattern continues for all channels.

Saturation Dynamic Status Saturation Latched Status Saturation Interrupt Enable Saturation Set Edge/Level Interrupt

AD1-AD3

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D AD4-AD6 and ADE-ADF

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ch16

Ch15

Ch14

Ch13

Ch12

Ch11

Ch10

Ch9

High

Low

High

Low

High

Low

High

Low High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

All A/D Modules

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

High

Low

High

Low

High

Low

High

Low High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

Function: Sets the corresponding bit associated with the channel’s Saturation error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x00FF FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

0x07F8

Module Sensor Summary Status

R

FUNCTION REGISTER MAP

Key: Bold Italic = Configuration/Control Bold Underline = Status

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e. write-1-to-clear, writing a ‘1' to a bit set to ‘1' will set the bit to ‘0').

Threshold Detect Programming Registers

All A/D Modules

0x1980

Threshold Detect Level 1 Ch 1**

R/W

0x1984

Threshold Detect Level 1 Ch 2**

R/W

0x1988

Threshold Detect Level 1 Ch 3**

R/W

0x198C

Threshold Detect Level 1 Ch 4**

R/W

0x1990

Threshold Detect Level 1 Ch 5**

R/W

0x1994

Threshold Detect Level 1 Ch 6**

R/W

0x1998

Threshold Detect Level 1 Ch 7**

R/W

0x199C

Threshold Detect Level 1 Ch 8**

R/W

0x19A0

Threshold Detect Level 1 Ch 9**

R/W

0x19A4

Threshold Detect Level 1 Ch 10**

R/W

0x19A8

Threshold Detect Level 1 Ch 11**

R/W

0x19AC

Threshold Detect Level 1 Ch 12**

R/W

0x1A00

Threshold Detect Level 1 Hysteresis Ch 1**

R/W

0x1A04

Threshold Detect Level 1 Hysteresis Ch 2**

R/W

0x1A08

Threshold Detect Level 1 Hysteresis Ch 3**

R/W

0x1A0C

Threshold Detect Level 1 Hysteresis Ch 4**

R/W

0x1A10

Threshold Detect Level 1 Hysteresis Ch 5**

R/W

0x1A14

Threshold Detect Level 1 Hysteresis Ch 6**

R/W

0x1A18

Threshold Detect Level 1 Hysteresis Ch 7**

R/W

0x1A1C

Threshold Detect Level 1 Hysteresis Ch 8**

R/W

0x1A20

Threshold Detect Level 1 Hysteresis Ch 9**

R/W

0x1A24

Threshold Detect Level 1 Hysteresis Ch 10**

R/W

0x1A28

Threshold Detect Level 1 Hysteresis Ch 11**

R/W

0x1A2C

Threshold Detect Level 1 Hysteresis Ch 12**

R/W

AD4-AD6, ADE-ADF

0x19B0

Threshold Detect Level 1 Ch 13**

R/W

0x19B4

Threshold Detect Level 1 Ch 14**

R/W

0x19B8

Threshold Detect Level 1 Ch 15**

R/W

0x19BC

Threshold Detect Level 1 Ch 16**

R/W

0x1A30

Threshold Detect Level 1 Hysteresis Ch 13**

R/W

0x1A34

Threshold Detect Level 1 Hysteresis Ch 14**

R/W

0x1A38

Threshold Detect Level 1 Hysteresis Ch 15**

R/W

0x1A3C

Threshold Detect Level 1 Hysteresis Ch 16**

R/W

0x1A80

Threshold Detect Level 2 Ch 1**

R/W

0x1A84

Threshold Detect Level 2 Ch 2**

R/W

0x1A88

Threshold Detect Level 2 Ch 3**

R/W

0x1A8C

Threshold Detect Level 2 Ch 4**

R/W

0x1A90

Threshold Detect Level 2 Ch 5**

R/W

0x1A94

Threshold Detect Level 2 Ch 6**

R/W

0x1A98

Threshold Detect Level 2 Ch 7**

R/W

0x1A9C

Threshold Detect Level 2 Ch 8**

R/W

0x1AA0

Threshold Detect Level 2 Ch 9**

R/W

0x1AA4

Threshold Detect Level 2 Ch 10**

R/W

0x1AA8

Threshold Detect Level 2 Ch 11**

R/W

0x1AAC

Threshold Detect Level 2 Ch 12**

R/W

0x1B00

Threshold Detect Level 2 Hysteresis Ch 1**

R/W

0x1B04

Threshold Detect Level 2 Hysteresis Ch 2**

R/W

0x1B08

Threshold Detect Level 2 Hysteresis Ch 3**

R/W

0x1B0C

Threshold Detect Level 2 Hysteresis Ch 4**

R/W

0x1B10

Threshold Detect Level 2 Hysteresis Ch 5**

R/W

0x1B14

Threshold Detect Level 2 Hysteresis Ch 6**

R/W

0x1B18

Threshold Detect Level 2 Hysteresis Ch 7**

R/W

0x1B1C

Threshold Detect Level 2 Hysteresis Ch 8**

R/W

0x1B20

Threshold Detect Level 2 Hysteresis Ch 9**

R/W

0x1B24

Threshold Detect Level 2 Hysteresis Ch 10**

R/W

0x1B28

Threshold Detect Level 2 Hysteresis Ch 11**

R/W

0x1B2C

Threshold Detect Level 2 Hysteresis Ch 12**

R/W

AD4-AD6, ADE-ADF

0x1AB0

Threshold Detect Level 2 Ch 13**

R/W

0x1AB4

Threshold Detect Level 2 Ch 14**

R/W

0x1AB8

Threshold Detect Level 2 Ch 15**

R/W

0x1ABC

Threshold Detect Level 2 Ch 16**

R/W

0x1B30

Threshold Detect Level 2 Hysteresis Ch 13**

R/W

0x1B34

Threshold Detect Level 2 Hysteresis Ch 14**

R/W

0x1B38

Threshold Detect Level 2 Hysteresis Ch 15**

R/W

0x1B3C

Threshold Detect Level 2 Hysteresis Ch 16**

R/W

0x1C80

Threshold Detect Control

R/W

All A/D Modules

0x1B80

Low Saturation Value Ch 1**

R/W

0x1B84

Low Saturation Value Ch 2**

R/W

0x1B88

Low Saturation Value Ch 3**

R/W

0x1B8C

Low Saturation Value Ch 4**

R/W

0x1B90

Low Saturation Value Ch 5**

R/W

0x1B94

Low Saturation Value Ch 6**

R/W

0x1B98

Low Saturation Value Ch 7**

R/W

0x1B9C

Low Saturation Value Ch 8**

R/W

0x1BA0

Low Saturation Value Ch 9**

R/W

0x1BA4

Low Saturation Value Ch 10**

R/W

0x1BA8

Low Saturation Value Ch 11**

R/W

0x1BAC

Low Saturation Value Ch 12**

R/W

0x1C00

High Saturation Value Ch 1**

R/W

0x1C04

High Saturation Value Ch 2**

R/W

0x1C08

High Saturation Value Ch 3**

R/W

0x1C0C

High Saturation Value Ch 4**

R/W

0x1C10

High Saturation Value Ch 5**

R/W

0x1C14

High Saturation Value Ch 6**

R/W

0x1C18

High Saturation Value Ch 7**

R/W

0x1C1C

High Saturation Value Ch 8**

R/W

0x1C20

High Saturation Value Ch 9**

R/W

0x1C24

High Saturation Value Ch 10**

R/W

0x1C28

High Saturation Value Ch 11**

R/W

0x1C2C

High Saturation Value Ch 12**

R/W

AD4-AD6, ADE-ADF

0x1BB0

Low Saturation Value Ch 13**

R/W

0x1BB4

Low Saturation Value Ch 14**

R/W

0x1BB8

Low Saturation Value Ch 15**

R/W

0x1BBC

Low Saturation Value Ch 16**

R/W

0x1C30

Low Saturation Value Ch 13**

R/W

0x1C34

Low Saturation Value Ch 14**

R/W

0x1C38

Low Saturation Value Ch 15**

R/W

0x1C3C

Low Saturation Value Ch 16**

R/W

Status Registers

Threshold

0x0940

Dynamic Status

R

0x0944

Latched Status*

R/W

0x0948

Interrupt Enable

R/W

0x094C

Set Edge/Level Interrupt

R/W

0x1C90

Saturation Control

R/W

Saturation

0x0960

Dynamic Status

R

0x0964

Latched Status*

R/W

0x0968

Interrupt Enable

R/W

0x096C

Set Edge/Level Interrupt

R/W

Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Memory Space and these addresses are absolute based on the module slot position. In other words, do not apply the Module Address offset to these addresses.

0x0550

Module 1 Interrupt Vector 21 - Threshold

R/W

0x0558

Module 1 Interrupt Vector 23 - Saturation

R/W

0x0750 vModule 2 Interrupt Vector 21 - Threshold

R/W

0x0758

Module 2 Interrupt Vector 23 - Saturation

|0x0950 |Module 3 Interrupt Vector 21 - Threshold |R/W

|0x0958 |Module 3 Interrupt Vector 23 - Saturation |R/W

0x0B50

Module 4 Interrupt Vector 21 - Threshold

R/W

0x0B58

Module 4 Interrupt Vector 23 - Saturation

R/W

|0x0D50 |Module 5 Interrupt Vector 21 - Threshold |R/W

|0x0D58 |Module 5 Interrupt Vector 23 - Saturation |R/W

0x0F50

Module 6 Interrupt Vector 21 - Threshold

R/W

0x0F58

Module 6 Interrupt Vector 23 - Saturation

R/W

|0x0650 |Module 1 Interrupt Steering 21 - Threshold |R/W

|0x0658 |Module 1 Interrupt Steering 23 - Saturation |R/W

0x0850

Module 2 Interrupt Steering 21 - Threshold

R/W

0x0858

Module 2 Interrupt Steering 23 - Saturation

R/W

|0x0A50 |Module 3 Interrupt Steering 21 - Threshold |R/W

|0x0A58 |Module 3 Interrupt Steering 23 - Saturation |R/W

0x0C50

Module 4 Interrupt Steering 21 - Threshold

R/W

0x0C58

Module 4 Interrupt Steering 23 - Saturation

R/W

|0x0D50 |Module 5 Interrupt Steering 21 - Threshold |R/W

|0x0D58 |Module 5 Interrupt Steering 23 - Saturation |R/W

0x1050

Module 6 Interrupt Steering 21 - Threshold

R/W

0x1058

Module 6 Interrupt Steering 23 - Saturation

R/W

MODULE COMMON REGISTERS

The registers described in this document are common to all NAI Generation 5 modules.

Module Information Registers

The registers in this section provide module information such as firmware revisions, capabilities and unique serial number information.

FPGA Version Registers

The FPGA firmware version registers include registers that contain the Revision, Compile Timestamp, SerDes Revision, Template Revision and Zynq Block Revision information.

FPGA Revision

Function: FPGA firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 1. FPGA Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Compile Timestamp

Function: Compile Timestamp for the FPGA firmware.

Type: unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the compile timestamp of the board’s FPGA

Operational Settings: The 32-bit value represents the Day, Month, Year, Hour, Minutes and Seconds as formatted in the table:

Table 2. FPGA Compile Timestamp

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

day (5-bits)

month (4-bits)

year (6-bits)

hr

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

hour (5-bits)

minutes (6-bits)

seconds (6-bits)

FPGA SerDes Revision

Function: FPGA SerDes revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the SerDes revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 3. FPGA SerDes Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Template Revision

Function: FPGA Template revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the template revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 4. FPGA Template Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Zynq Block Revision

Function: FPGA Zynq Block revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Zynq block revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 5. FPGA Zynq Block Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Bare Metal Version Registers

The Bare Metal firmware version registers include registers that contain the Revision and Compile Time information.

Bare Metal Revision

Function: Bare Metal firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s Bare Metal

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 6. Bare Metal Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Bare Metal Compile Time

Function: Provides an ASCII representation of the Date/Time for the Bare Metal compile time.

Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the ASCII representation of the compile time of the board’s Bare Metal

Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time. The hexadecimal values in the field below represent: May 17 2019 at 15:38:32

Table 7. Bare Metal Compile Time (Note: little-endian order of ASCII values)

Word 1 (Ex. 0x2079614D)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Month ('y' - 0x79)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Month ('a' - 0x61)

Month ('M' - 0x4D)

Word 2 (Ex. 0x32203731)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Year ('2' - 0x32)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Day ('7' - 0x37)

Day ('1' - 0x31)

Word 3 (Ex. 0x20393130)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Year ('9' - 0x39)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year ('1' - 0x31)

Year ('0' - 0x30)

Word 4 (Ex. 0x31207461)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Hour ('1' - 0x31)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x74)

't' (0x61)

Word 5 (Ex. 0x38333A35)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minute ('8' - 0x38)

Minute ('3' - 0x33)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

':' (0x3A)

Hour ('5' - 0x35)

Word 6 (Ex. 0x0032333A)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

NULL (0x00)

Seconds ('2' - 0x32)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Seconds ('3' - 0x33)

':' (0x3A)

FSBL Version Registers

The FSBL version registers include registers that contain the Revision and Compile Time information for the First Stage Boot Loader (FSBL).

FSBL Revision

Function: FSBL firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s FSBL

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 8. FSBL Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FSBL Compile Time

Function: Provides an ASCII representation of the Date/Time for the FSBL compile time.

Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the ASCII representation of the Compile Time of the board’s FSBL

Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time.

The hexadecimal values in the field below represent: May 17 2019 at 15:38:32

Table 9. FSBL Compile Time (Note: little-endian order of ASCII values)

Word 1 (Ex. 0x2079614D)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Month ('y' - 0x79)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Month ('a' - 0x61)

Month ('M' - 0x4D)

Word 2 (Ex. 0x32203731)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Year ('2' - 0x32)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Day ('7' - 0x37)

Day ('1' - 0x31)

Word 3 (Ex. 0x20393130)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Year ('9' - 0x39)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year ('1' - 0x31)

Year ('0' - 0x30)

Word 4 (Ex. 0x31207461)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Hour ('1' - 0x31)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x74)

't' (0x61)

Word 5 (Ex. 0x38333A35)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minute ('8' - 0x38)

Minute ('3' - 0x33)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

':' (0x3A)

Hour ('5' - 0x35)

Word 6 (Ex. 0x0032333A)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

NULL (0x00)

Seconds ('2' - 0x32)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Seconds ('3' - 0x33)

':' (0x3A)

Module Serial Number Registers

The Module Serial Number registers include registers that contain the Serial Numbers for the Interface Board and the Functional Board of the module.

Interface Board Serial Number

Function: Unique 128-bit identifier used to identify the interface board.

Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Serial number of the interface board

Operational Settings: This register is for information purposes only.

Functional Board Serial Number

Function: Unique 128-bit identifier used to identify the functional board.

Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Serial number of the functional board

Operational Settings: This register is for information purposes only.

Module Capability

Function: Provides indication for whether or not the module can support the following: SerDes block reads, SerDes FIFO block reads, SerDes packing (combining two 16-bit values into one 32-bit value) and floating point representation. The purpose for block access and packing is to improve the performance of accessing larger amounts of data over the SerDes interface.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0107

Read/Write: R

Initialized Value: 0x0000 0103

Operational Settings: A “1” in the bit associated with the capability indicates that it is supported.

Table 10. Module Capability

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

Flt-Pt

0

0

0

0

0

Pack

FIFO Blk

Blk

Module Memory Map Revision

Function: Module Memory Map revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Module Memory Map Revision

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 11. Module Memory Map Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Module Measurement Registers

The registers in this section provide module temperature measurement information.

Temperature Readings Registers

The temperature registers provide the current, maximum (from power-up) and minimum (from power-up) Zynq and PCB temperatures.

Interface Board Current Temperature

Function: Measured PCB and Zynq Core temperatures on Interface Board.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB and Zynq core temperatures based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 202C, this represents PCB Temperature = 32° Celsius and Zynq Temperature = 44° Celsius.

Table 12. Interface Board Current Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Functional Board Current Temperature

Function: Measured PCB temperature on Functional Board.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0019, this represents PCB Temperature = 25° Celsius.

Table 13. Functional Board Current Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Interface Board Maximum Temperature

Function: Maximum PCB and Zynq Core temperatures on Interface Board since power-on.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the maximum measured PCB and Zynq core temperatures since power-on based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the maximum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 5569, this represents maximum PCB Temperature = 85° Celsius and maximum Zynq Temperature = 105° Celsius.

Table 14. Interface Board Maximum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Interface Board Minimum Temperature

Function: Minimum PCB and Zynq Core temperatures on Interface Board since power-on.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the minimum measured PCB and Zynq core temperatures since power-on based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the minimum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 D8E7, this represents minimum PCB Temperature = -40° Celsius and minimum Zynq Temperature = -25° Celsius.

Table 15. Interface Board Minimum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Functional Board Maximum Temperature

Function: Maximum PCB temperature on Functional Board since power-on.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0055, this represents PCB Temperature = 85° Celsius.

Table 16. Functional Board Maximum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Functional Board Minimum Temperature

Function: Minimum PCB temperature on Functional Board since power-on.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 00D8, this represents PCB Temperature = -40° Celsius.

Table 17. Functional Board Minimum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Higher Precision Temperature Readings Registers

These registers provide higher precision readings of the current Zynq and PCB temperatures.

Higher Precision Zynq Core Temperature

Function: Higher precision measured Zynq Core temperature on Interface Board.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Zynq Core temperature on Interface Board

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x002B 0271, this represents Zynq Core Temperature = 43.625° Celsius, and value 0xFFF6 0177 represents -10.375° Celsius.

Table 18. Higher Precision Zynq Core Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Interface PCB Temperature

Function: Higher precision measured Interface PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Interface PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x0020 007D, this represents Interface PCB Temperature = 32.125° Celsius, and value 0xFFE8 036B represents -24.875° Celsius.

Table 19. Higher Precision Interface PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Functional PCB Temperature

Function: Higher precision measured Functional PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Functional PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/100 of degree Celsius. For example, if the register contains the value 0x0018 004B, this represents Functional PCB Temperature = 24.75° Celsius, and value 0xFFD9 0019 represents -39.25° Celsius.

Table 20. Higher Precision Functional PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Module Health Monitoring Registers

The registers in this section provide module temperature measurement information. If the temperature measurements reaches the Lower Critical or Upper Critical conditions, the module will automatically reset itself to prevent damage to the hardware.

Module Sensor Summary Status

Function: The corresponding sensor bit is set if the sensor has crossed any of its thresholds.

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: This register provides a summary for module sensors. When the corresponding sensor bit is set, the Sensor Threshold Status register for that sensor will indicate the threshold condition that triggered the event.

Table 21. Module Sensor Summary Status

Bit(s)

Sensor

D31:D6

Reserved

D5

Functional Board PCB Temperature

D4

Interface Board PCB Temperature

D3:D0

Reserved

Module Sensor Registers

The registers listed in this section apply to each module sensor listed for the Module Sensor Summary Status register. Each individual sensor register provides a group of registers for monitoring module temperatures readings. From these registers, a user can read the current temperature of the sensor in addition to the minimum and maximum temperature readings since power-up. Upper and lower critical/warning temperature thresholds can be set and monitored from these registers. When a programmed temperature threshold is crossed, the Sensor Threshold Status register will set the corresponding bit for that threshold. The figure below shows the functionality of this group of registers when accessing the Interface Board PCB Temperature sensor as an example.

Module Sensor Registers
Sensor Threshold Status

Function: Reflects which threshold has been crossed

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: The associated bit is set when the sensor reading exceed the corresponding threshold settings.

Table 22. Sensor Threshold Status

Bit(s)

Description

D31:D4

Reserved

D3

Exceeded Upper Critical Threshold

D2

Exceeded Upper Warning Threshold

D1

Exceeded Lower Critical Threshold

D0

Exceeded Lower Warning Threshold

Sensor Current Reading

Function: Reflects current reading of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents current sensor reading as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Minimum Reading

Function: Reflects minimum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents minimum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Maximum Reading

Function: Reflects maximum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents maximum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Lower Warning Threshold

Function: Reflects lower warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC220 0000 represents temperature = -40.0° Celsius.

Sensor Lower Critical Threshold

Function: Reflects lower critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC25C 0000 represents temperature = -55.0° Celsius.

Sensor Upper Warning Threshold

Function: Reflects upper warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42AA 0000 represents temperature = 85.0° Celsius.

Sensor Upper Critical Threshold

Function: Reflects upper critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42FA 0000 represents temperature = 125.0° Celsius.

FUNCTION REGISTER MAP

Key

Bold Underline

= Measurement/Status/Board Information

Bold Italic

= Configuration/Control

Module Information Registers

0x003C

FPGA Revision

R

0x0030

FPGA Compile Timestamp

R

0x0034

FPGA SerDes Revision

R

0x0038

FPGA Template Revision

R

0x0040

FPGA Zynq Block Revision

R

0x0074

Bare Metal Revision

R

0x0080

Bare Metal Compile Time (Bit 0-31)

R

0x0084

Bare Metal Compile Time (Bit 32-63)

R

0x0088

Bare Metal Compile Time (Bit 64-95)

R

0x008C

Bare Metal Compile Time (Bit 96-127)

R

0x0090

Bare Metal Compile Time (Bit 128-159)

R

0x0094

Bare Metal Compile Time (Bit 160-191)

R

0x007C

FSBL Revision

R

0x00B0

FSBL Compile Time (Bit 0-31)

R

0x00B4

FSBL Compile Time (Bit 32-63)

R

0x00B8

FSBL Compile Time (Bit 64-95)

R

0x00BC

FSBL Compile Time (Bit 96-127)

R

0x00C0

FSBL Compile Time (Bit 128-159)

R

0x00C4

FSBL Compile Time (Bit 160-191)

R

0x0000

Interface Board Serial Number (Bit 0-31)

R

0x0004

Interface Board Serial Number (Bit 32-63)

R

0x0008

Interface Board Serial Number (Bit 64-95)

R

0x000C

Interface Board Serial Number (Bit 96-127)

R

0x0010

Functional Board Serial Number (Bit 0-31)

R

0x0014

Functional Board Serial Number (Bit 32-63)

R

0x0018

Functional Board Serial Number (Bit 64-95)

R

0x001C

Functional Board Serial Number (Bit 96-127)

R

0x0070

Module Capability

R

0x01FC

Module Memory Map Revision

R

Module Measurement Registers

0x0200

Interface Board PCB/Zynq Current Temperature

R

0x0208

Functional Board PCB Current Temperature

R

0x0218

Interface Board PCB/Zynq Max Temperature

R

0x0228

Interface Board PCB/Zynq Min Temperature

R

0x0218

Functional Board PCB Max Temperature

R

0x0228

Functional Board PCB Min Temperature

R

0x02C0

Higher Precision Zynq Core Temperature

R

0x02C4

Higher Precision Interface PCB Temperature

R

0x02E0

Higher Precision Functional PCB Temperature

R

Module Health Monitoring Registers

0x07F8

Module Sensor Summary Status

R

Module Sensor Registers Memory Map

FUNCTION REGISTER MAP

Key: Bold Underline = Measurement/Status Bold Italic = Configuration/Control

Module Information Registers

0x003C

FPGA Revision

R

0x0030

FPGA Compile Timestamp

R

0x0034

FPGA SerDes Revision

R

0x0038

FPGA Template Revision

R

0x0040

FPGA Zynq Block Revision

R

0x0074

Bare Metal Revision

R

0x0080

Bare Metal Compile Time (Bit 0-31)

R

0x0084

Bare Metal Compile Time (Bit 32-63)

R

0x0088

Bare Metal Compile Time (Bit 64-95)

R

0x008C

Bare Metal Compile Time (Bit 96-127)

R

0x0090

Bare Metal Compile Time (Bit 128-159)

R

0x0094

Bare Metal Compile Time (Bit 160-191)

R

0x007C

FSBL Revision

R

0x00B0

FSBL Compile Time (Bit 0-31)

R

0x00B4

FSBL Compile Time (Bit 32-63)

R

0x00B8

FSBL Compile Time (Bit 64-95)

R

0x00BC

FSBL Compile Time (Bit 96-127)

R

0x00C0

FSBL Compile Time (Bit 128-159)

R

0x00C4

FSBL Compile Time (Bit 160-191)

R

0x0000

Interface Board Serial Number (Bit 0-31)

R

0x0004

Interface Board Serial Number (Bit 32-63)

R

0x0008

Interface Board Serial Number (Bit 64-95)

R

0x000C

Interface Board Serial Number (Bit 96-127)

R

0x0010

Functional Board Number (Bit 0-31)

R

0x0014

Functional Serial Number (Bit 32-63)

R

0x0018

Functional Serial Number (Bit 64-95)

R

0x001C

Functional Serial Number (Bit 96-127)

R

0x0070

Module Capability

R

0x01FC

Module Memory Map Revision

R

Module Measurement Registers

0x029C

Zynq Core Voltage

R

0x02A0

Zynq Aux Voltage

R

0x02A4

Zynq DDR Voltage

R

0x0200

Interface Board PCB/Zynq Current Temp

R

0x0208

Functional Board PCB Current Temp

R

0x0218

Interface Board PCB/Zynq Max Temp

R

0x0220

Interface Board PCB/Zynq Min Temp

R

0x0228

Functional Board PCB Max Temp

R

0x0230

Functional Board PCB Min Temp

R

0x02C0

Higher Precision Zynq Core Temperature

R

0x02C4

Higher Precision Interface PCB Temperature

R

0x02E0

Higher Precision Functional PCB Temperature

R

Module Health Monitoring Registers

0x07F8

Module Sensor Summary Status

R

image::CME-CMF/CME_CMF-Img011.jpg

Notes:

  1. Available on modules with the interface board rev. C and higher

  2. Available on the following modules: PB1 and TE2

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients’ time-to-mission with a unique approach based on a Configurable Open Systems Architecture™ (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

Application Notes

Calibration and Repairs

Call Us

(631) 567-1100

Help Bot

X