Integrator Resources

The official home for NAI Support

Not sure where to start? Try Quick Start Guide or ask a question below!

Toggle Components with Visual Button
JavaScript Form Processing

3U VPX I/O & Communications Board

INTRODUCTION

This manual provides information about the North Atlantic Industries, Inc. (NAI) 68CB6 3U OpenVPX Multifunction I/O Board. The 68CB6 is a 3U OpenVPX multifunction I/O and communications board that is designed with six inboard functions providing 10 different I/O, measurement and communications functions:

An inboard-optimized combination function (CF) module that provides:

  • Twelve channels of discrete input

  • Two channels of CAN bus input featuring flexible data (FD) rate, which extends data rate speed by a factor of 8 (64 bytes) of the arbitration bit rate.

  • Two channels of digital-to-analog output

  • Two channels of AC/DC analog-to-digital input

Two channels of Linear Variable Differential Transformation (LVDT) to digital measurement, plus two channels of AC Reference output (one for each channel)

Eight channels that can be individually programmed as either a Thermocouple (TC) or a Resistance Temperature Detector (RTD) measurement interface

Sixteen channels with 16-bit, individual Successive Approximation Register (SAR) analog-to-digital (A/D) converters for each channel

Five channels of full-bridge Strain Gauge (SG) measurement

Four channels of Chip Detect (CD) measurement with Fuzz Burn capability

SOFTWARE SUPPORT

The ENAIBL Software Support Kit (SSK) is supplied with all system platform based board level products. This platform’s SSK contents include html format help documentation which defines board specific library functions and their respective parameter requirements. A board specific library and its source code is provided (module level ‘C’ and header files) to facilitate function implementation independent of user operating system (O/S). Portability files are provided to identify Board Support Package (BSP) dependent functions and help port code to other common system BSPs. With the use of the provided help documentation, these libraries are easily ported to any 32-bit O/S such as RTOS or Linux.

The latest version of a board specific SSK can be downloaded from our website www.naii.com in the software downloads section. A Quick-Start Software Manual is also available for download where the SSK contents are detailed, Quick-Start Instructions provided and GUI applications are described therein. For other operating system support, contact factory.

Specifications

General for the Motherboard

Signal Logic Level:

Supports LVDS PCIe ver. 3.0 bus (x1)

Power (Motherboard):

+12 VDC @ <1 A (est. typical) +3.3V_AUX @ <100 mA (typical) Then add power for each individual module

Temperature, Operating:

"C" =0° C to +70° C, "H" =-40° C to +85° C (see part number)

Storage Temperature:

-55° C to +105° C

Temperature Cycling:

Each board is cycled from -40° C to +85° C for option “H”

General size: Height:

3.94" / 100 mm (3U)

Width:

1.0” / 25.4 mm (5 HP) air cooled front panel options

Depth:

6.3“ / 160 mm deep

Weight:

21.5 oz. (610 g) unpopulated (approx.) (convection or conduction cooled) >> then add weight for each module (typically 1.5 oz. (42 g) each)

Specifications are subject to change without notice.

Environmental

Unless otherwise specified, the following table outlines the general Environmental Specifications design guidelines for board level products of North Atlantic Industries. All our cPCI, VME and OpenVPX boards are designed for either air or conduction cooling. All boards also incorporate appropriate stiffening to ensure performance during shock and vibration but also to assure reliable operation (lower fatigue stresses) over the service life of the product.

Parameters

Level

1 / Commercial-AC (Air Cooled)

2 / Rugged-AC (Air Cooled)

3 / Rugged-CC (Conduction Cooled)

Temperature – Operating

0° C to 70° C, Ambient

-40° C to 85° C, Ambient

-40° C to 85° C, at wedge lock thermal interface

Temperature - Storage

-40° C to 85° C

-55° C to 105° C

-55° C to 105° C

Humidity – Operating

0 to 95%, non-condensing

0 to 95%, non-condensing

0 to 95%, non-condensing

Humidity - Storage

0 to 95%, non-condensing

0 to 95%, non-condensing

0 to 95%, non-condensing

Vibration – Sine

2 g peak, 15 Hz – 2 kHz

6 g peak, 15 Hz – 2 kHz

10 g peak, 15 Hz – 2 kHz

Vibration – Random

.002 g /Hz, 15 Hz – 2 kHz

0.04 g /Hz, 15 Hz – 2 kHz

0.1 g /Hz, 15 Hz – 2 kHz

Shock

20 g peak, half-sine, 11 ms

30 g peak, half-sine 11 ms

40 g peak, half-sine, 11 ms

Low Pressure

Up to 15,000 ft.

Up to 50,000 ft.

Up to 50,000 ft.

Notes:

  1. Based on sweep duration of ten minutes per axis on each of the three mutually perpendicular axes.

  2. Displacement limited to 0.10 D.A. from 15 to 44 Hz.

  3. Displacement limited to 0.436 D.A. from 15 to 21 Hz.

  4. 60 minutes per axis on each of the three mutually perpendicular axes.

  5. Per MIL-STD-810G, Method 5.14.6 Procedure I, Fig.514.6C-6 Category 7 tailored (11.65 Grms): 15 Hz – 2 kHz; ASD (PSD) at 0.04 g2/Hz between 15 Hz - 150 Hz, increasing @ 4 dB/octave from 0.04 g2/Hz to 0.1 g /Hz between 150 Hz – 300 Hz, 0.1 g2/Hz between 300 Hz - 1000 Hz, decreasing @ 6 dB/octave from 0.1 g2/Hz to 0.025 g2/Hz between 1000 Hz – 2000 Hz. Three hits per direction per axis (total of 18 hits).

  6. Three hits per direction per axis (total of 18 hits).

  7. For altitudes higher than 50,000 ft., contact NAI.

  8. High temperature operation requires 350 lfm minimum air flow across cover/heatsink (module dependent).

  9. High temperature operation requires 600 lfm minimum air flow across cover/heatsink (module dependent).

Specifications subject to change without notice

REGISTER MEMORY MAP ADDRESSING

The register map address consists of the following:

  • cPCI/PCIe BAR or Base Address for the Board

  • Module Slot Base Address

  • Function Offset Address

Board Base Address

The table below lists the BAR used for access to the motherboard and module registers. The second BAR is used internally for motherboard and module firmware updates. The other cPCI/PCIe BARs not listed are not used.

NAI Boards

Device ID

Bus

Motherboard and Module Register Access

Motherboard and Module Firmware Updates

Slave Boards

75G5

0x7581

cPCI

BAR 0 Size: Module Dependent (minimum 64K Bytes)

BAR 1 Size: 1M Bytes

79G5

0x7981

PCIe

BAR 1 Size: Module Dependent (minimum 64K Bytes)

BAR 2 Size: 1M Bytes

68G5/68G5P/68DT1/68CB6

0x6881

PCIe

68SDP

0x6805

PCIe

67G6

0x6781

PCIe

64G5

N/A

VME

Slave Window 1 Size: 8M Bytes Addressing: Geographical Addressing or DIP Switches on board.

Slave Window 2 Size: 8M Bytes

74SD5

0x7405

PMC

64K Bytes

N/A

Controller/Master Boards

75G5/75ARM1

0x7581

cPCI

BAR 0 Size: Module Dependent (minimum 64K bytes)

BAR 1 Size: 1M bytes

75INT2

0x7584

cPCI

BAR 1 Size: Module Dependent (minimum 64K bytes)

BAR 2 Size: 1M Bytes

75PPC1

0x7584

cPCI

68ARM1

0x6884

PCIe

68ARM2

0x6886

PCIe

68PPC2

0x6884

PCIe

67PPC2

0x6784

PCIe

64ARM1

N/A

VME

Slave Window 1 Size: 8M Bytes

Slave Window 2 Size: 8M Bytes

NANO

NIU1A

N/A

N/A

Direct Memory Access

Internal Direct Memory Access

NIU2A

N/A

N/A

Module Slot and Function Addresses

The memory map for the modules are dependent on the types of modules on the board and the order in which the modules are installed on the board as well as the firmware installed on the motherboard. The function modules are enumerated allowing for dynamic memory space allocation and therefore the “start” address of the module function register area is factory pre-defined (and read from) the Module Address register. Refer to Figure 1 for an example.

reg map addressing

Motherboard Registers:

Read/Write access to the motherboard registers starts with the base address for the board and then the motherboard base offset address.

For example, to address Module Slot 1 Start Address register (i.e. register address = 0x0400):

  1. Start with the base address for the board.

  2. Add the motherbase register address offset.

Motherboard Address =

Base Address + Motherboard Address Offset

= 0x0000 0400

0x0000 0000 + 0x0400

Module Registers:

Read/Write access to the Function module’s registers start with the base address of the board. Add the “content” for the Module Start Address and then, add the specific module function register offset.

For example, to address an appropriate/specific function module with a register offset:

  1. Start with the base address for the board.

  2. Add the value (contents) from the module base address offset register (contents/value of Motherboard Memory register for Module 1 (i.e., @ 0x0400) = 0x4000.

  3. Then add the specific module function Register Offset of interest (i.e., A/D Reading Ch 1 @ 0x1000)

(Function Specific) Address =

Base Address

Module Base Address Offset

Function Register Offset

= 0x0000 5000

0x0000 0000

0x4000

0x1000

MOTHERBOARD REGISTER DESCRIPTIONS

Module Information Registers

The Module Slot Address, Module Slot Size and Module Slot ID provide information about the modules detected on the board.

Module Slot Address

Function: Specifies the Base Address for the module in the specific slot position.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Based on board’s module configuration.

Operational Settings: 0x0000 0000 indicates no Module found.

Module Slot Size

Function: Specifies the Memory Size (in bytes) allocated for the module in the specific slot position.

Type: unsigned binary word (32-bit)

Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Assigned by factory for the module.

Operational Settings: 0x0000 0000 indicates no Module found.

Module Slot ID

Function: Specifies the Model ID for the module in the specified slot position.

Type: 4-character ASCII string

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Assigned by factory for the module.

Operational Settings: The Module ID is formatted as four ASCII bytes: three characters followed by a space. Module IDs are in little-endian order with a single space following the first three characters. For example, 'TL1' is '1LT', 'SC1' is '1CS' and so forth. Example below is for “TL1” (MSB justified). All value of 0000 0000 indicates no Module found.

Table 1. Module Slot ID

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: 'T' - 0x54)

ASCII Character (ex: 'L' - 0x4C)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: '1' - 0x31)

ASCII Space (' ' - 0x20)

Hardware Information Registers

The registers identified in this section provide information about the board’s hardware.

Product Serial Number

Function: Specifies the Board Serial Number.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Serial number assigned by factory for the board.

Operational Settings: N/A

Platform

Function: Specifies the Board Platform Identifier. Values are for the ASCII characters for the NAI valid platforms (Identifiers).

Type: 4-character ASCII string

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Platform Identifier of the board

Operational Settings: NAI platform for this board is shown below:

NAI Platform

Platform Identifier

ASCII Binary Values (Note: little-endian order of ascii values)

6U VME

64

0x0000 3436

6U VPX

67

0x0000 3736

3U VPX

68

0x0000 3836

3U VPX

67

0x0000 3736

ARM

N/A

0x004D 5241

cPCI

75

0x0000 3537

NIU

00

0x0000 0303

Model

Function: Specifies the Board Model Identifier. Values are for the ASCII characters for the NAI valid models.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Model Identifier of the board

Operational Settings: Examples of NAI models and the associated values for these models are shown below:

NAI Model ASCII Binary Values (Note: little-endian order of ascii values)

ARM

0x004D 5241

G

0x0000 0047

PPC

0x0043 5050

CB

0x0000 4243

DT

0x0000 5444

INT

0x0054 4E49

NIU

0x0055 494E

Generation

Function: Specifies the Board Generation. Identifier values are for the ASCII characters for the NAI valid generation identifiers.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Generation Identifier of the board

Operational Settings: Examples of NAI generations and the associated values for these generations are shown below:

NAI Generation ASCII Binary Values (Note: little-endian order of ascii values)

1

0x0000 0031

2

0x0000 0032

3E

0x0000 4533

5

0x0000 0035

6

0x0000 0036

Ethernet Interface Count/Processor Count

Function: Specifies the Ethernet Interface Count and Processor Count

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Operational Settings:

Ethernet Interface Count - Indicates the number of Ethernet interfaces on the product motherboard.

Processor Count - Indicates the number of unique processor types on the motherboard

Table 2. Ethernet Interface/Processor Count

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ethernet Interface Count (0x0002)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Processor Count (0x0001)

ARM Platform Type/Maximum Module Slot Count

Function: Specifies the ARM Platform Type and Maximum Module Slot Count.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Operational Settings:

ARM Platform Type – UltraScale+ = 3

ARM Platform Type/Maximum Module Slot Count

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

16

ARM Platform Type = 0x0003 (UltraScale)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

Processor Operating System Registers

The registers in this section provide information about the Operating System that is running on the host processor on the motherboard. For boards that have more than one processor (ex. 75PPC1, 75INT2, 68PPC2, etc), the host processor would be the Power-PC or Intel processor.

ARM Processor Platform

Function: Specifies the ARM Processor on the motherboard. Values are for the ASCII characters for the NAI host processor platforms specified by the Operating System.

Type: 8-character ASCII string – Two (2) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: ASCII code is for the Host Platform Identifier of the board.

Operational Settings: Valid NAI platforms based on Operating System loaded to host processor.

Processor Platform (Note: 8-character ASCII string) (“aarch64”)
Table 3. Word 1 (0x6372 6161 = “craa”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

‘c' (0x63)

‘r' (0x72)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

‘a’ (0x61)

‘a’ (0x61)

Table 4. Word 2 (0x0034 3668 = “ 46h”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

null (0x00)

‘4' (0x34)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

‘6' (0x36)

‘h' (0x68)

Processor Operating System

Function: Specifies the Operating System installed for the host processor. Values are for the ASCII characters for the NAI supported operating systems.

Type: 12-character ASCII string - Three (3) unsigned binary word (32-bit)

Data Range: N/A Read/Write: R

Operational Settings: ASCII, 12 characters; ('Linux', 'VxWorks', 'RTOS', …​)

Processor Platform (Note: 12-character ASCII string) (“Linux”)
Table 5. Word 1 (0x756E 694C = “uniL”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

'u' (0x75)

'n' (0x6E)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'i' (0x69)

'L' (0x4C)

Table 6. Word 2 (0x0000 0078 = “ x”)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

null (0x00)

null (0x00)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

null (0x00)

null (0x00)

Table 7. Word 3 (0x0000 0000 = “ ”)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

null (0x00)

null (0x00)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

null (0x00)

null (0x00)

Motherboard Firmware Information Registers

The registers in this section provide information on the revision of the firmware installed on the motherboard.

Motherboard Core (MBCore) Firmware Version

Function: Specifies the Version of the NAI factory provided Motherboard Core Application installed on the board.

Type: Two (2) unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The motherboard firmware version consists of four components: Major, Minor, Minor 2 and Minor 3.

Table 8. Motherboard Core Firmware Version (Note: little-endian order in register) (ex. 4.7.0.0)

Word 1 (Ex. 0007 0004 = 4.7 (Major.Minor)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minor (ex: 0x0007 = 7)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Major (ex: 0x0004 = 4)

Word 2 (Ex. 0x0000 0000 = 0000 = 0.0 (Minor2.Minor3))

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minor 3 (ex: 0x000 = 0)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor 2 (ex: 0x000 = 0)

Motherboard Firmware Build Time/Date

Function: Specifies the Build Date/Time of the NAI factory provided Motherboard Core Application installed on the board.

Type: Two (2) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Operational Settings: The motherboard firmware time consists of the Build Date and Build Time.

Note
On some builds the the Date/Time fields are fixed to 0000 0000 to maintain binary consistency across builds.
Table 9. Motherboard Firmware Build Time (Note: little-endian order in register)

Word 1 - Build Date (ex. 0x030C 07E2 = 2018-12-03)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Day (ex: 0x03 = 3)

Month (ex: 0x0C = 12)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year (ex: 0x07E2 = 2018)

Word 2 - Build Time (ex. 0x001B 3B0A = 10:59:27)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

null (0x00)

Seconds (ex: 0x1B = 27)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minutes (ex: 0x3B = 59)

Hours (ex: 0x0A = 10)

Motherboard FPGA Firmware Version

Function: Specifies the Version of the NAI factory provided Motherboard FPGA installed on the board.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The motherboard FPGA firmware version consists of two components: Major, Minor.

Table 10. Motherboard FPGA Firmware Version (ex. 0x0005 0008 = 5.8)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major (ex: 0x0005 = 5)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor (ex: 0x0008 = 8)

Motherboard FPGA Compile Date/Time

Function: Specifies the Compile Date/Time of the NAI factory provided Motherboard FPGA installed on the board.

Type: unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Operational Settings: The motherboard firmware time consists of the Build Date and Time in the following format:

Table 11. Motherboard FPGA Compile Time (ex. 0xD12A 01B8 = 02/26/21 00:06:56)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Day (D31:D27)

Month (D26:D23)

Year (D22:D17)

ex. 0xD

ex. 0x1

0x2

0xA

1

1

0

1

0

0

1

0

0

0

1

0

1

0

1

1

Day = 0x1A = 26

Month = 0x2 = 2

Year = 0x15 = 21

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Hour (D16:D12)

Minutes (D11:D6)

Seconds (D5:D0)

ex. 0x0

ex. 0x1

ex. 0xB

ex. 0x8

Hour = 0x00 = 0

Minutes = 0x06 = 06

Seconds = 0x38 = 56

Motherboard Monitoring Registers

The registers in this provide motherboard voltage and temperature measurement information.

UltraScale Core Voltage

Function: Specifies the Measured UltraScale Core Voltage.

Type: unsigned word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Measured UltraScale Core Voltage (based on the conversion below)

Operational Settings: The upper 16-bits are the Integer part of the Voltage, and the lower 16-bits is the Fractional part of the Voltage. For example, if the register contains the value 0x0000 0342, this represents 0.834 Volts.

Table 12. UltraScale Core Voltage

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Integer part of Voltage

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional part of Voltage

UltraScale Aux Voltage

Function: Specifies the Measured UltraScale Aux Voltage.

Type: unsigned word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Measured UltraScale Aux Voltage (based on the conversion below)

Operational Settings: The upper 16-bits are the Integer part of the Voltage, and the lower 16-bits is the Fractional part of the Voltage. For example, if the register contains the value 0x0001 0317, this represents 1.791 Volts.

Table 13. UltraScale Aux Voltage

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Integer part of Voltage

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional part of Voltage

Temperature Readings Register

The temperature registers provide the current, maximum (from power-up) and minimum (from power-up) for the processor and PCB for UltraScale processor, and Host and Slave processors measurements for boards that have these additional processors.

Function: Specifies the Measured Temperatures on Motherboard.

Type: signed byte (8-bits) for each temperature reading – Six (6) 32-bit words

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the measured temperatures based on the table below.

Operational Settings: The 8-bit temperature readings are signed bytes. For example, if the following register contains the value 0x0000 3B3B:

Example:

Table 14. Word 1 (Current Host & UltraScale Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

Host Core Temperature (0x00) (N/A)

Host PCB Temperature (0x00) (NA)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

UltraScale Core Temperature

UltraScale PCB Temperature

The values would represent the following temperatures:

Temperature Measurements

Data Bits

Value

Temperature (Celsius)

Host Core Temperature

D31:D24

0x00

0° (N/A)

Host PCB Temperature

D23:D16

0x00

0° (N/A)

UltraScale Core Temperature

D15:D8

0x3B

+59°

UltraScale PCB Temperature

D7:D0

0x3B

+59°

Temperature Readings
Table 15. Word 1 (Current Host & UltraScale Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

Host Core Temperature (0x00) (N/A)

Host PCB Temperature (0x00) (NA)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

UltraScale Core Temperature

UltraScale PCB Temperature

Table 16. Word 2 (Max Host Temperatures & Current Slave Zynq Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

Max Host Core Temperature (0x00) (N/A)

Max Host PCB Temperature (0x00) (N/A)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Slave Zynq Core Temperature (0x00) (N/A)

Slave Zynq PCB Temperature (0x00) (N/A)

Table 17. Word 3 (Min Host Temperatures & Max UltraScale Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

Min Host Core Temperature (0x00) (N/A)

Min Host PCB Temperature (0x00) (N/A)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Max UltraScale Core Temperature

Max UltraScale PCB Temperature

Table 18. Word 4 (Max Slave Zynq Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Max Slave Zynq Core Temperature (0x00) (N/A)

Max Slave Zynq PCB Temperature (0x00) (N/A)

Table 19. Word 5 (Min UltraScale Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Min UltraScale Core Temperature

Min UltraScale PCB Temperature

Table 20. Word 6 (Min Slave Zynq Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Min Slave Zynq Core Temperature (0x00) (N/A)

Min Slave Zynq PCB Temperature (0x00) (N/A)

Higher Precision Temperature Readings Registers

These registers provide higher precision readings of the current UltraScale Core and PCB temperatures.

Higher Precision UltraScale Core Temperature

Function: Specifies the Higher Precision Measured UltraScale Core temperature on Motherboard Board.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured UltraScale Core temperature on Motherboard Board

Operational Settings: The upper 16-bits represent the signed integer part of the temperature, and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x002B 0271, this represents UltraScale Core Temperature = 43.625° Celsius, and value 0xFFF6 0177 represents -10.375° Celsius.

Table 21. Higher Precision UltraScale Core Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Motherboard PCB Temperature

Function: Specifies the Higher Precision Measured Motherboard PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Motherboard PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x0020 007D, this represents Interface PCB Temperature = 32.125° Celsius, and value 0xFFE8 036B represents -24.875° Celsius.

Table 22. Higher Precision Motherboard PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Ethernet Configuration Registers

The registers in this section provide information about the Ethernet Configuration for the two ports on the board.

Important: Regardless if the board is configured for one or two Ethernet ports, the second IP address cannot be on the same Subnet as the First IP Address. The table below provides examples of valid and invalid IP Addresses and Subnet Mask Addresses.

First Port (A) IP Address

First Port (A) Subnet Mask

Second Port (B) IP Address

Second Port (B) Subnet Mask

Result

192.168.1.5

255.255.255.0

192.168.2.5

255.255.255.0

Good

192.168.1.5

255.255.0.0

192.168.2.5

255.255.0.0

Conflict

192.168.1.5

255.255.0.0

192.168.2.5

255.255.255.0

Conflict

10.0.0.15

255.0.0.0

192.168.1.5

255.255.255.0

Good

Ethernet MAC Address and Ethernet Settings

Function: Specifies the Ethernet MAC Address and Ethernet Settings for the Ethernet port.

Type: Two (2) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet MAC Address consists of six octets. The Ethernet Settings are defined in table.

Table 23. Ethernet Settings

Bits

Description

Values

D31:D23

Reserved

0

D22:D21

Duplex

00 = Not Specified, 01 = Half Duplex, 10 = Full Duplex, 11 = Reserved

D20:D18

Speed

000 = Not Specified, 001 = 10 Mbps, 010 = 100 Mbps, 011 = 1000 Mbps, 100 = 2500 Mbps, 101 = 10000 Mbps, 110 = Reserved, 111 = Reserved

D17

Auto Negotiate

0 = Enabled, 1 = Disabled

D16

Static IP Address

0 = Enabled, 1 = Disabled

Table 24. Ethernet MAC Address and Ethernet Settings (Note: little-endian order in register)

Word 1 (Ethernet MAC Address (Octets 1-4)) (ex: aa:bb:cc:dd:ee:ff)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

MAC Address Octet 4 (ex: 0xDD)

MAC Address Octet 3 (ex: 0xCC)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

MAC Address Octet 2 (ex: 0xBB)

MAC Address Octet 1 (ex: 0xAA)

Word 2 (Ethernet MAC Address (Octets 5-6) and Ethernet Settings)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ethernet Settings (See table)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

MAC Address Octet 6 (ex: 0xFF)

MAC Address Octet 5 (ex: 0xEE)

Ethernet Interface Name

Function: Specifies the Ethernet Interface Name for the Ethernet port.

Type: 8-character ASCII string

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet Interface Name (eth0, eth1, etc) for the Ethernet port.

Table 25. Ethernet Interface Name (Note: little-endian order in register) (ex. “eth0”)*

Word 1 (Bit 0-31) (ex: 0x3068 7465 = “0hte”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: '0' - 0x30)

ASCII Character (ex: 'h' - 0x68)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: 't' - 0x74)

ASCII Character (ex: 'e' - 0x65)

Word 2 (Bit 32-63) (ex: 0x0000 0000)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: null - 0x00)

ASCII Character (ex: null - 0x00)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: null - 0x00)

ASCII Character (ex: null - 0x00)

Ethernet IPv4 Address

Function: Specifies the Ethernet IPv4 Address for the Ethernet port.

Type: Three (3) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet IPv4 Address consists of three parts: IPv4 Address, IPv4 Subnet Mask and IPv4 Gateway.

Table 26. Ethernet IPv4 Address (Note: little-endian order in register)

Word 1 (Ethernet IPv4 Address) (ex: 0x1001 A8C0 = 192.168.1.16)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Address Octet 4 (ex: 0x10 = 16)

IPv4 Address Octet 3 (ex: 0x01 = 1)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Address Octet 2 (ex: 0xA8 = 168)

IPv4 Address Octet 1 (ex: 0xC0 = 192)

Word 2 (Ethernet IPv4 Subnet) (ex: 0x00FF FFFF = 255.255.255.0)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Subnet Octet 4 (ex: 0x00 = 0)

IPv4 Subnet Octet 3 (ex: 0xFF = 255)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Subnet Octet 2 (ex: 0xFF = 255)

IPv4 Subnet Octet 1 (ex: 0xFF = 255)

Word 3 (Ethernet IPv4 Gateway) (ex: 0x0101 A8C0 = 192.168.1.1)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Gateway Octet 4 (ex: 0x01 = 1)

IPv4 Gateway Octet 3 (ex: 0x01 = 1)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Gateway Octet 2 (ex: 0xA8 = 168)

IPv4 Gateway Octet 1 (ex: 0xC0 = 192)

Ethernet IPv6 Address

Function: Specifies the Ethernet IPv6 Address for the Ethernet port.

Type: Five (5) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The IPv6 Prefix length indicates the network portion of an IPv6 address using the following format:

  • IPv6 address/prefix length

  • Prefix length can range from 0 to 128

  • Typical prefix length is 64

The following is an illustration of IPv6 addressing with IPv6 Prefix length of 64.

64 bits

64 bits

Prefix

Interface ID

Prefix 1

Prefix 2

Prefix 3

Subnet ID

Interface ID 1

Interface ID 2

Interface ID 3

Interface ID 4

Example: 2002:c0a8:101:0:7c99:d118:9058:1235/64

2002

C0A8

0101

0000

7C99

D118

9058

1235

Table 27. Ethernet IPv6 Address (Note: little-endian order within 32-bit and 16-bit words in register) (ex. IPv6 Address: 2002:c0a8:101:0:7c99:d118:9058:1235 IPv6 Prefix: 64)

Word 1 (Ethernet IPv6 Address (Prefix 1-2)) (ex:0xA8C0 0220 = 2002 C0A8)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Prefix 2 (ex: 0xA8C0 = C0A8)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix 1 (ex: 0x0220 = 2002)

Word 2 (Ethernet IPv6 Address (Prefix 3/Subnet ID)) (ex:0x000 0101 = 0101 0000)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Subnet ID (ex: 0x0000 = 0000)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix 3 (ex: 0x0101 = 0101)

Word 3 (Ethernet IPv6 Address (Interface ID 1-2)) (ex: 0x18D1 997C = 7C99 D118)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Interface ID 2 (ex: 0x18D1 = D118)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Interface ID 1 (ex: 0x997C = 7C99)

Word 4 (Ethernet IPv6 Address (Interface ID 3-4)) (ex: 0x3512 5890 = 9058 1235)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Interface ID 4 (ex: 0x3512 = 1235)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Interface ID 3 (ex: 0x5890 = 9058)

Word 5 (Ethernet IPv6 Prefix Length) (ex:0x0000 0040)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix Length (ex: 0x0040 = 64)

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Note
The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Sets where to direct the interrupt.

Type: unsigned binary word (32-bit)

Data Range: See table Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME

1

Direct Interrupt to ARM Processor (via SerDes) (Custom App on ARM or NAI Ethernet Listener App)

2

Direct Interrupt to PCIe Bus

5

Direct Interrupt to cPCI Bus

6

Motherboard Health Monitoring Registers

The registers in this section provide motherboard voltage, current and temperature measurement information.

Motherboard Sensor Summary Status

Function: The corresponding sensor bit is set if the sensor has crossed any of its thresholds.

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: This register provides a summary for motherboard sensors. When the corresponding sensor bit is set, the Sensor Threshold Status register for that sensor will indicate the threshold condition that triggered the event.

Table 28. Motherboard Sensor Summary Status

Bit(s)

Sensor

D31:D5

Reserved

D4

Motherboard PCB Temperature

D3

Zynq Core Temperature

D2:D0

Reserved

Motherboard Sensor Registers

The registers listed in this section apply to each module sensor listed for the Motherboard Sensor Summary Status register.

Sensor Threshold Status

Function: Reflects which threshold has been crossed

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: The associated bit is set when the sensor reading exceed the corresponding threshold settings.

Table 29. Sensor Threshold Status

Bit(s)

Description

D31:4

Reserved

D3

Exceeded Upper Critical Threshold

D2

Exceeded Upper Warning Threshold

D1

Exceeded Lower Critical Threshold

D0

Exceeded Lower Warning Threshold

Sensor Current Reading

Function: Reflects current reading of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents current sensor reading as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Minimum Reading

Function: Reflects minimum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents minimum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Maximum Reading

Function: Reflects maximum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents maximum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Lower Warning Threshold

Function: Reflects lower warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC220 0000 represents temperature = -40.0° Celsius.

Sensor Lower Critical Threshold

Function: Reflects lower critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC25C 0000 represents temperature = -55.0° Celsius.

Sensor Upper Warning Threshold

Function: Reflects upper warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42AA 0000 represents temperature = 85.0° Celsius.

Sensor Upper Critical Threshold

Function: Reflects upper critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42FA 0000 represents temperature = 125.0° Celsius.

Module Health Monitoring Registers

Module BIT Status

Function: Provides the ability to monitor the individual Module BIT Status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The Module BIT Status registers provide the ability to monitor individual Module BIT results as Latched and current value. A 1 is any bit field indicates BIT failure for the Module in that slot.

Table 30. Module BIT Status

Bit(s)

Description

D31:D20

Reserved

D19

Module Slot 3 BIT Failure (current value)

D18

Module Slot 2 BIT Failure (current value)

D17

Module Slot 1 BIT Failure (current value)

D16

Reserved

D15:D4

Reserved

D3

Module Slot 3 BIT Failure - Latched

D2

Module Slot 2 BIT Failure - Latched

D1

Module Slot 1 BIT Failure - Latched

D0

Reserved

Scratchpad Area

Function: Registers reserved as scratch pad for customer use.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Operational Settings: This area in memory is reserved for customer use.

Key: Bold Underline = Measurement/Status/Board Information Bold Italic = Configuration/Control

Module Information Registers

0x0400

Module Slot 1 Address

R

0x0404

Module Slot 2 Address

R

0x0408

Module Slot 3 Address

R

0x040C

Module Slot 4 Address

R

0x0410

Module Slot 5 Address

R

0x0414

Module Slot 6 Address

R

0x0430

Module Slot 1 Size

R

0x0434

Module Slot 2 Size

R

0x0438

Module Slot 3 Size

R

0x043C

Module Slot 4 Size

R

0x0440

Module Slot 5 Size

R

0x0444

Module Slot 6 Size

R

0x0460

Module Slot 1 ID

R

0x0464

Module Slot 2 ID

R

0x0468

Module Slot 3 ID

R

0x046C

Module Slot 4 ID

R

0x0470

Module Slot 5 ID

R

0x0474

Module Slot 6 ID

R

Hardware Information Registers

0x0020

Product Serial Number

R

0x0024

Platform

R

0x0028

Model

R

0x002C

Generation

R

0x0030

Processor Count/Ethernet Count

R

0x0034

Maximum Module Slot Count/ARM Platform Type

R

0x0038

Processor Platform (Bit 0-31)

R

0x003C

Processor Platform (Bit 32-63)

R

0x0040

Processor Operating System (Bit 0-31)

R

0x0044

Processor Operating System (Bit 32-63)

R

0x0048

Processor Operating System (Bit 64-95)

R

0x004C

Processor Operating System Version (Bit 0-31)

R

0x0050

Processor Operating System Version (Bit 32-63)

R

Motherboard Firmware Information Registers

Motherboard Core Information

0x0100

MB Core Major/Minor Version

R

0x0104

MB Core Minor 2/3 Version

R

0x0108

MB Core Build Date (Bit 0-31)

R

0x010C

MB Core Build Date (Bit 32-63)

R

Motherboard FPGA Information

0x0270

MB FPGA Revision

R

0x0274

MB FPGA Compile Date/Time

R

Motherboard Measurement Registers

0x0218

UltraScale Core Voltage

R

0x021C

UltraScale Aux Voltage

R

Temperature Readings

0x0200

Current Host & UltraScale Temperatures

R

0x0204

Max Host Temperatures & Current Slave Zynq Temp

R

0x0208

Min Host Temperatures & Max UltraScale Temp

R

0x020C

Max Slave Zynq Temperatures

R

0x0210

Min UltraScale Temperatures

R

0x0214

Min Slave Zynq Temperatures

R

Higher Precision Temperature Readings

0x0230

Current UltraScale Core Temperature

R

0x0234

Current UltraScale PCB Temperature

R

Ethernet Configuration Registers

0x0070

Ethernet A MAC (Octets 1-4)

R

0x0074

Ethernet A MAC (Octets 5-6)/Misc Settings

R

0x0078

Ethernet A Interface Name (Bit 0-31)

R

0x007C

Ethernet A Interface Name (Bit 32-63)

R

0x0080

Ethernet A IPv4 Address

R

0x0084

Ethernet A IPv4 Subnet Mask

R

0x0088

Ethernet A IPv4 Gateway

R

0x008C

Ethernet A IPv6 Address (Prefix 1-2)

R

0x0090

Ethernet A IPv6 Address (Prefix 3/Subnet ID)

R

0x0094

Ethernet A IPv6 Address (Interface ID 1-2)

R

0x0098

Ethernet A IPv6 Address (Interface ID 3-4)

R

0x009C

Ethernet A IPv6 Prefix Length

R

0x00A0

Ethernet B MAC (Octets 1-4)

R

0x00A4

Ethernet B MAC (Octets 5-6)/Misc Settings

R

0x00A8

Ethernet B Interface Name (Bit 0-31)

R

0x00AC

Ethernet B Interface Name (Bit 32-63)

R

0x00B0

Ethernet B IPv4 Address

R

0x00B4

Ethernet B IPv4 Subnet Mask

R

0x00B8

Ethernet B IPv4 Gateway

R

0x00BC

Ethernet B IPv6 Address (Prefix 1-2)

R

0x00C0

Ethernet B IPv6 Address (Prefix 3/Subnet ID)

R

0x00C4

Ethernet B IPv6 Address (Interface ID 1-2)

R

0x00C8

Ethernet B IPv6 Address (Interface ID 3-4)

R

0x00CC

Ethernet B IPv6 Prefix Length

R

Interrupt Vector and Steering

0x0500 –0x057C

Module 1 Interrupt Vector 1 - 32

R/W

0x0700 –0x077C

Module 2 Interrupt Vector 1 - 32

R/W

0x0900 –0x097C

Module 3 Interrupt Vector 1 - 32

R/W

0x0B00 –0x0B7C

Module 4 Interrupt Vector 1 - 32

R/W

0x0D00 –0x0D7C

Module 5 Interrupt Vector 1 - 32

R/W

0x0F00 –0x0F7C

Module 6 Interrupt Vector 1 - 32

R/W

0x0600 –0x067C

Module 1 Interrupt Steering 1 - 32

R/W

0x0800 –0x087C

Module 2 Interrupt Steering 1 - 32

R/W

0x0A00 –0x0A7C

Module 3 Interrupt Steering 1 - 32

R/W

0x0C00 –0x0C7C

Module 4 Interrupt Steering 1 - 32

R/W

0x0E00 –0x0E7C

Module 5 Interrupt Steering 1 - 32

R/W

0x1000 –0x107C

Module 6 Interrupt Steering 1 - 32

R/W

Motherboard Health Monitoring Registers

0x20F8

Motherboard Sensor Summary Status 1

R

health

Module Health Monitoring Registers

Module BIT Status

0x0128

Module BIT Status (current and latched)

R

Scratchpad Area

0x3800 –0x3BFF Scratchpad Registers R/W

INBOARD FUNCTIONAL OVERVIEW

The 68CB6 is a unique configuration of re-packaged NAI COSA® module types embedded and accessed as “inboard” functions. The following sections describe the principle of operation, register descriptions, and register memory map for each of these specific functions.

COMBINATION FUNCTION (CF1) MODULE - DISCRETE INPUT FUNCTION

Principle of Operation

The inboard Discrete (DT) Input Function provides up to 12 individual digital input channels with BIT fault detection, which enables flagging of non-compliant outputs or inconsistent input readings between dual input measurements.

When channels are programmed as inputs, they can be used for either voltage or contact sensing. Channels set for contact sensing (e.g. sensing a relay contact position; OPEN-CLOSED) can be configured with a programmable “pull-up” or “pull-down” (current source or sink) which effectively provides the proper voltage level change to sense the open state of the contact. This unique design eliminates the need for external resistors or mechanical jumpers. Instead, this design offers a current source/sink (in banks of 6 channels) that the user programs to a desired current (0-5 mA) level.

The 12 channels are configured as 2 banks of 6 channels. Each bank is provided with a separate external input VCC and a ground return (GND) pin. The GND pins are common within the module but are isolated from system (power) GND.

Operational requirements/assumptions:

An external source VCC supply must be wired for proper:

  • Input operation when requiring a programmed pull-up current (i.e. programmed “pull-up” for input contact sense; OPEN/GND detect/state change).

An external source Ground/Return must be wired for all input configurations. The Ground/Return must be the input signal or the load current sink ground/reference.

ETHERNET

(For detailed supplement, please visit the NAI web-site specific product page and refer to: Ethernet Interface for Generation 5 SBC and Embedded IO Boards Specification)

The Ethernet Interface Option allows communications and control access to all function modules either via the system BUS or Ethernet ports 1 or 2.

Ethernet 1

Ethernet 2

The default IP address:

192.168.1.16

192.168.2.16

The default subnet:

255.255.255.0

255.255.255.0

The default gateway:

192.168.1.1

192.168.2.1

Note
Actual "as shipped" card Ethernet default IP addresses may vary based upon final ATP configuration(s).) Ethernet Port IP addresses may be field re-flashed to new default programmed addressed via use of the “IP Configuring for Ethernet Supported Boards” FLASH software support kit, available/documented from the specific product web page.

The NAI interface supports IPv4 and IPv6 and both the TCP and UDP protocols. The Ethernet Operation Mode Command Listener application running on the motherboard host processor implements the operation interface. The listener is operational on startup through the nai_MBStartup process and listen on specific ports for commands to process. The default ports are listed below:

  • TCP1 - Port 52801

  • TCP2 - Port 52802

  • UDP1 - Port 52801

  • UDP2 - Port 52802

While the listener is active, note that interrupts from the motherboard do not trigger. The listener can be disabled by turning off the nai_MBStartup process through the Motherboard EEPROM. To turn off nai_MBStartup use the command mbeeprom_util set MBStartupInitOnlyFlag 1 in the console, either by serial port or telnet to the motherboard, and then reboot the system. To turn on the nai_MBStartup use the command mbeeprom_util set MBStartupInitOnlyFlag 0 in the console, either by serial port or telnet to the motherboard, and then reboot the system.

Ethernet Message Framework

The interface uses a specific message framework for all commands and responses. All messages begin with a Preamble code and end with a Postamble code. The message framework is shown below.

Preamble

2 bytes Always 0xD30F

SequenceNo

2 bytes

Type Code

2 byte

Message Length

(2 bytes)

Payload

(0..1414 bytes)

Postamble

2 bytes Always 0xF03D

Message Elements

Preamble

The Preamble is used to delineate the beginning of a message frame. The Preamble is always 0xD30F.

SequenceNo

The SequenceNo is used to associate Commands with Responses.

Type Code

Type Codes are used to define the type of Command or Response the message contains.

Message Length

The Message Length is the number of bytes in the complete message frame starting with and including the Preamble and ending with and including the Postamble.

Payload

The Payload contains the unique data that makes up the command or response. Payloads vary based on command type.

Postamble

The Postamble is use to delineate the end of a message frame. The Postamble is always 0xF03D.

Notes

  1. The messaging protocol applies only to card products.

  2. Messaging is managed by the connected (client) computer. The client computer will send a single message and wait for a reply from the card. Multiple cards may be managed from a single computer, subject to channel and computer capacity.

Board Addressing

The interface provides two main addressing areas: Onboard and Off-board.

Onboard addressing refers to accessing resources located on the board that is implementing the operation interface (including its modules).

Off-board addressing refers to accessing resources located on another board reachable via VME, PCI, or other bus. Off-board addressing requires a Master/Slave configuration.

The user must always specify if a particular address is Onboard or Off-board. See the command descriptions for the onboard and off-board flags.

Within a particular board (Onboard or Off-board), the address space is broken up into two areas: Motherboard Common Address Space and Module Address Space. All addresses are 32-bit.

Motherboard Common Address Space starts at 0x00000000 and ends at 0x00004000. This is a 4Kx32-bit address space (16 kbytes).

Module Address Space starts at 0x00004000. Module addressing is dynamically configured at startup. NAI boards support between 1 and 6 modules. The minimum module address space size is 4Kx32 (16 kbytes) and module sizes are always a multiple of 4Kx32.

Module addressing is dynamic and cumulative. The first detected module (starting with Slot 1) is given an address of 0x00004000. The 2nd detected Module is given an address of:

First_Detected_Module_Address + First_Detected_Module_Size

Note
Slots do not define addresses.

If no module is detected in a module slot, that slot is not given an address. Therefore, if the first detected Module is in Slot 2, then that module address will be 0x00004000. If the next detected module is in Slot 4, then the address of that Module will be:

Second_Detected_Module_Address = First_Detected_Module_Address + First_Detected_Module_Size

If a 3rd Module is detected in Slot 6, then the address of that Module will be:

Third_Detected_Module_Address = Second_Detected_Module_Address + Second_Detected_Module_Size

Note
Module addresses are calculated at each board startup when the modules are detected. Therefore, if a module should fail to be detected due to malfunction or because it was removed from the motherboard, the addresses of the modules that follow it in the slot sequence will be altered. This is important to note when programming to this interface.

Users can always retrieve the Module Addresses, Module Sizes and Module IDs from the fixed Motherboard Common address area. This data is set upon each board startup. While the Module Addressing is dynamic, the address where these addresses are stored is fixed. For example, to find the startup address of the module location in Slot 3, refer to the MB Common Address 0x00000408 from the Motherboard Common Addresses table that follows.

Ethernet Wiring Convention

RJ-45 Pin

T568A Color

T568B Color

10/100Base-T

1000BASE-T

NAI wiring convention

1

white/green stripe

white/orange stripe

TX+

DA+

ETH-TP0+

2

green

orange

TX-

DA-

ETH-TP0-

3

white/orange stripe

white/green stripe

RX+

DB+

ETH-TP1+

4

blue

blue

DC+

ETH-TP2+

5

white/blue stripe

white/blue stripe

DC-

ETH-TP2-

6

orange

green

RX-

DB-

ETH-TP1-

7

white/brown stripe

white/brown stripe

DD+

ETH-TP3+

8

brown

brown

DD-

ETH-TP3-

68CB6 CONNECTOR/PIN-OUT INFORMATION

Front and Rear Panel Connectors

The 68CB6 3U OpenVPX Multifunction I/O board is available in two configurations: convection-cooled and conduction-cooled. The 68CB6 follows the OpenVPX “Payload Slot Profile” configured as:

Slot profile: SLT3-PER-1U-14.3.3

Module profile: MOD3-PER-1U-16.3.3-2

User I/O is available through OpenVPX user defined rear I/O connectors P1, P2 (see part number and pin-out information).

Notes:

The following notes apply unless otherwise specified:

  1. Maximum ratings for the Tyco MultiGig-RT2 type rear I/O connectors are as follows (per Tyco 108-2072): 50 V peak AC or 50 VDC 1A (@ 30 ºC)

  2. DO NOT CONNECT TO ANY UNDESIGNATED or (N/C) PINS

Utility Connector J5

Industry standard mini-HDMI type (type-A receptacle).

Panel LEDs

Front Panel LEDs indications (only available on air-cooled units)

LED

ILLUMINATED

EXTINGUISHED

GRN:

Blinking: Initializing

Steady On: Power-On/Ready

Power off

RED:

Module BIT error

No BIT fault

YEL:(flash)

Card access (bus or Gig-E activity)

No card activity

Chassis Ground

Front Panel: No dedicated chassis GND pins available. Jack screw sockets are chassis GND.

Rear connector key guides are chassis ground.

Front I/O Utility Connector J5 (Convection and Conduction-Cooled)

The 68CB6 utilizes a Mini-HDMI type card edge connector J5, available on either convection or conduction-cooled configurations that provides the following signals:

Serial (port 1) Ethernet port 1 (factory configuration option – Ethernet port1 may be redirected to rear I/O J2)

NAI also provides an optional “breakout” adapter board (NAI P/N 75SBC4-BB) with a mini-HDMI to mini-HDMI type cable. The “breakout” adapter board and a Micro-HDMI cable (NAI P/N 75SBC4-BB) allow for standard I/O connections to Ethernet and asynchronous serial (DB9). Consult the factory for availability.

j5

Signal Descriptions J5

Signal Name

Description

ETH1-TPx

Ethernet port 1 signals (4 pair) 10/100/1000 twisted pair signals (Optional)

SER1-TXD

Asynchronous transmit serial data port 1 (out) / RS232 debug/console port only

SER1-RXD

Asynchronous received serial data port 1 (in) / RS232 debug/console port only

GND

System Ground (return)

Rear I/O VPX Connectors P0-P2 (Conduction-Cooled)

The 68CB6 3U OpenVPX multifunction I/O board provides interface via the rear VPX connectors.

Rear I/O Summary

Signals defined as N/C currently have no functionality associated and are not required for general operation.

P0 - Utility plane. Contains the following signal definitions:

Power: Primary +5V, +3.3V_AUX, +/- 12V and System GND

Geographical Address Pins: GA0# - GA4#, GAP#

Card reset: SYSRST# signal

VPX AUX/REF CLK (Not used)

P1 - Defined as primarily Data/Control Planes (User defined I/O secondary)

High Speed Switched Fabric Interface: One ultra-thin pipe option (PCIe ver. 2.0 (x1) or SRIO (1x)).

Ethernet: Gig-E port option(s) are available and defined (See Part Number Designation section)

P2 - User defined I/O (primary)

summary

Rear I/O Utility Plane (P0)

The P0 (Utility) Plane contains the primary power, bus and utility signals for the OpenVPX board. Additionally, several of the user defined pins can be utilized for Geographical Addressing and a parallel SYSRST# signal. Signals defined as N/C currently have no functionality associated and is not required for general operation.

UTILITY

Row

Row

Row

Row

Row

Row

Row

P0

G

F

E

D

C

B

A

1

N/C (VS1_G1)

N/C (VS1_F1)

N/C (VS1_E1)

N/C (NCD1)

N/C (VS2_C1)

N/C (VS2_B1)

N/C (VS2_A1)

2

N/C (VS1_G2)

N/C (VS1_F2)

N/C (VS1_E2)

N/C (NCD2)

N/C (VS2_C2)

N/C (VS2_B2)

N/C (VS2_A2)

3

(+)5V (VS3)

(+)5V (VS3)

(+)5V (VS3)

N/C (NCD3)

(+)5V (VS3)

(+)5V (VS3)

(+)5V (VS3)

4

IMPB-SCL-B (N/C)

IMPB-SDA-B (N/C)

GND

(-)12V (-12V_AUX)

GND

SYSRST#

N/C (NVMRO)

5

GAP#

GA4#

GND

(+)3.3V (+3.3V_AUX)

GND

IMPB-SCL-A (N/C)

IMPB-SDA-A (N/C)

6

GA3#

GA2#

GND

(+)12V (+12V_AUX)

GND

GA1#

GA0#

7

N/C (TCK)

GND

N/C (TDO)

N/C (TDI)

GND

N/C (TMS)

N/C (TRST)

8

GND

N/C*1 (REFCLK-25MHz-)

N/C*1 (REFCLK-25MHz+)

GND

N/C*1 (AUX-CLK-)

N/C*1 (AUX-CLK+)

GND

p0

Rear I/O Data/Control Planes (P1)

The 68CB6 has the configuration option for specifying a high-speed serial interface fabric bus connections – PCIe ver. 2.0 (x1). As defined in the OpenVPX bridge or payload slot specifications, the 68CB6 requires only one ‘ultra-thin pipe' (one Tx and one Rx differential pair), which provides additional user I/O definition opportunity. Additionally, the 68CB6 can be commanded/controlled via a front panel Gig-E interface (10/100/1000BaseT). Additional I/O is also defined on the P1 user defined plane. Signals defined as N/C currently have no functionality associated or are considered optional and are not required for general operation.

p1
Data Plane Row Row Row Row Row Row Row

P1

G

F

E

D

C

B

A

1

N/C

GND

PCIE-SRIO-TXN

PCIE-SRIO-TXP

GND

PCIE-SRIO-RX-N

PCIE-SRIO-RX-P

2

GND

AC_AD_LINE_IN2_RTN

AC_AD_LINE_IN2

GND

AC_AD_LINE_IN1_RTN

AC_AD_LINE_IN1

GND

3

N/C (RTC STDBY)

GND

S2_LVDT1

S3_LVDT1

GND

RLO_LVDT1

RHI_LVDT1

4

GND

N/C

S1_S4_LVDT1

GND

RTD_DRV_N_CH8

RTD_DRV_P_CH8

GND

5

N/C

GND

CD_28VIN_RTN (ISO-A)

CD_28VIN

GND

RTD_SNS_N_CH8

RTD_SNS_P_CH8

6

GND

RLO_LVDT2

RHI_LVDT2

GND

CD_VOUT_CH2

CD_VOUT_CH1

GND

7

N/C

GND

RTD_DRV_N_CH7

RTD_DRV_P_CH7

GND

RTD_SNS_N_CH7

RTD_SNS_P_CH7

8

GND

CD_VOUT_CH4

CD_VOUT_CH3

GND

RTD_DRV_N_CH6

RTD_DRV_P_CH6

GND

9

S2_LVDT2

GND

RTD_SNS_N_CH6

RTD_SNS_P_CH6

GND

RTD_DRV_N_CH5

RTD_DRV_P_CH5

10

GND

RTD_SNS_N_CH5

RTD_SNS_P_CH5

GND

RTD_DRV_N_CH4

RTD_DRV_P_CH4

GND

11

S1_S4_LVDT2

GND

RTD_SNS_N_CH4

RTD_SNS_P_CH4

GND

RTD_DRV_N_CH3

RTD_DRV_P_CH3

12

GND

RTD_SNS_N_CH3

RTD_SNS_P_CH3

GND

RTD_DRV_N_CH2

RTD_DRV_P_CH2

GND

13

S3_LVDT2

GND

RTD_SNS_N_CH2

RTD_SNS_P_CH2

GND

RTD_DRV_N_CH1

RTD_DRV_P_CH1

14

GND

RTD_SNS_N_CH1

RTD_SNS_P_CH1

GND

AD_IN16_N

AD_IN16_P

GND

15

N/C

GND

AD_IN15_N

AD_IN15_P

GND

AD_IN14_N

AD_IN14_P

16

GND

CANL_CH2

CANH_CH2

GND

CANL_CH1

CANH_CH1

GND

USER I/O - Defined Area (User Defined I/O) (P2)

The following pages contain the ‘user defined' I/O data area front and rear panel pin-outs with their respective signal designations for all module types currently offered/configured for the 68CB6 platform. The card is designed to route the function module I/O signals to the front and rear I/O connector. The following I/O connector pin-out is based upon the function module designated in the module slot. Signals defined as N/C currently have no functionality associated or are considered optional and are not required for general operation.

p2

Data Plane

Row

Row

Row

Row

Row

Row

Row

P2

A

B

C

D

E

F

G

1

AD_IN12_P

AD_IN12_N

GND

AD_IN13_P

AD_IN13_N

GND

DAC_VOUT_CH1

2

GND

AD_IN10_P

AD_IN10_N

GND

AD_IN11_P

AD_IN11_N

GND

3

AD_IN08_P

AD_IN08_N

GND

AD_IN09_P

AD_IN09_N

GND

DAC_VOUT_CH2

4

GND

AD_IN06_P

AD_IN06_N

GND

AD_IN07_P

AD_IN07_N

GND

5

AD_IN03_P

AD_IN03_N

GND

AD_IN04_P

AD_IN04_N

GND

AD_IN05_N

6

GND

AD_IN01_P

AD_IN01_N

GND

AD_IN02_P

AD_IN02_N

GND

7

SG_DRV_H_SNS_CH5

SG_DRV_L_SNS_CH5

GND

SG_DRV_H_CH5

SG_DRV_L_CH5

GND

AD_IN05_P

8

GND

SG_DRV_H_CH4

SG_DRV_L_CH4

GND

SG_BRG_H_CH5

SG_BRG_L_CH5

GND

9

SG_BRG_H_CH4

SG_BRG_L_CH4

GND

SG_DRV_H_SNS_CH4

SG_DRV_L_SNS_CH4

GND

SG_DRV_L_CH3

10

GND

SG_BRG_H_CH3

SG_BRG_L_CH3

GND

SG_DRV_H_SNS_CH3

SG_DRV_L_SNS_CH3

GND

11

SG_DRV_H_SNS_CH2

SG_DRV_L_SNS_CH2

GND

SG_DRV_H_CH2

SG_DRV_L_CH2

GND

SG_DRV_H_CH3

12

GND

SG_DRV_H_CH1

SG_DRV_L_CH1

GND

SG_BRG_H_CH2

SG_BRG_L_CH2

GND

13

DT_IN_CH12

SG_BRG_H_CH1

GND

SG_BRG_L_CH1

SG_DRV_H_SNS_CH1

GND

SG_DRV_L_SNS_CH1

14

GND

DT_IN_CH10

DT_IN_CH11

GND

VCC_DT GND_DT

GND

15

DT_IN_CH05

DT_IN_CH06

GND

DT_IN_CH07

DT_IN_CH08

GND

DT_IN_CH09

16

MECHANICAL DETAILS

General Outline

Note
The following mechanical outline detail examples are provided for reference only. Dimensions are in inches unless otherwise specified.

Conduction Cooled

conduction

Convection Cooled

convection

Part Number Designation

pn
Table 31. Notes

1.

MFIO Combination Functions “357” Definition Front I/O: 32 pins I/O standard. Rear I/O: 40 pins I/O standard The 68CB6 has (six) inboard function IDs:

1. CF1 – Four-function combination module (Inboard Optimized):

a. DT1-Type, 12-Ch. Discrete I/O

b. CB8-Type, 2-Ch. CANBus w/FD Communications input

c. DA1-Type, 2-Ch. Digital-to-Analog output

d. 2-Ch. AC/DC Analog-to-Digital input, isolated (115 Vrms typical)

2. LD6 – LD2-Type, 2-Ch. LVDT-to-Digital measurement plus 2-Ch. AC Reference output (one for each channel), 2-28 Vrms input, 2-12 Vrms AC Reference, ~2 kHz, 50 mA maximum (AC Reference output)

3. TR1 – 8-Ch. Thermocouple (multi-type)/RTD (2,3 or 4-wire) measurement, programmable per channel

4. ADF – 16-Ch. ±100 V Analog-to-Digital measurement, individual SAR, 16-bit, simultaneous sampling, 200 ksps 5. SG2 – SG1-Type, 5-Ch. Strain Gauge, full bridge

5. SG2 – SG1-Type, 5-Ch. Strain Gauge, full bridge

6. CD2 – CD1-Type, 2-Ch. Chip Detect & Fuzz Burn function capable

2.

Mechanical Options Rear I/O Only

3.

IPMC Definition

0. OPTION “0”: DEFAULT. The board will not provide IPMC functionality. The board in this default configuration will bootnormally without a Chassis Manager being present.

1. OPTION “1”: The board will provide VITA 46.11 Tier 2 compliant basic IPMC functionality. The board will be configuredexpecting Chassis Manager communication on boot-up and requires the +3.3V-AUX power supply (PS) to be available on the backplane (provision of +3.3V-AUX is a VPX requirement).

SYNCHRO/RESOLVER AND LVDT/RVDT SIMULATION MODULE CODE TABLES

Select the Digital-to-Synchro (DSx), Digital-to-Resolver (DRx) or Digital-to-LVDT/RVDT (DLx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable the design to assure that the correct default band width is set at the factory. All Input and Reference voltages are auto ranging. Frequency/voltage band tolerances +/- 10%. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

  • Single Channel module pending availability (contact factory)

Module ID

Format

Channel(s)

Output Voltage VL-L (Vrms)

Reference Voltage (Vrms)

Frequency Range (Hz)

Power / CH maximum (VA)

Notes

DS1

SYN

1*

2 - 28

2 - 115

47 - 1 K

3

DR1

RSL

DL1

LVDT/RVDT

DS2

SYN

1*

2 - 28

2 - 115

1 K - 5 K

3

DR2

RSL

DL2

LVDT/RVDT

DS3

SYN

1*

2 - 28

2 - 115

5 K - 10 K

3

DR3

RSL

DL3

LVDT/RVDT

DS4

SYN

1*

2 - 28

2 - 115

10 K - 20 K

3

DR4

RSL

DL4

LVDT/RVDT

DS5

SYN

1*

28 - 90

2 - 115

47 - 1 K

3

DR5

RSL

DL5

LVDT/RVDT

DSX

SYN

1*

X

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

DRX

RSL

DLX

LVDT/RVDT

DSA

SYN

2

2 - 28

2 - 115

47 - 1 K

1.5

DRA

RSL

DLA

LVDT/RVDT

DSB

SYN

2

2 - 28

2 - 115

1 K - 5 K

1.5

DRB

RSL

DLB

LVDT/RVDT

DSC

SYN

2

2 - 28

2 - 115

5 K - 10 K

1.5

DRC

RSL

DLC

LVDT/RVDT

DSD

SYN

2

2 - 28

2 - 115

10 K - 20 K

1.5

DRD

RSL

DLD

LVDT/RVDT

DSE

SYN

2

28 - 90

2 - 115

47 - 1 K

2.2

DRE

RSL

DLE

LVDT/RVDT

DSY

SYN

2

Y

Y

Y

Y

Y = TBD; special configuration, requires special part number code designation, contact factory

DRY

RSL

DLY

LVDT/RVDT

DSJ

SYN

3

2 - 28

2 - 115

47 - 1 K

0.5

DRJ

RSL

DLJ

LVDT/RVDT

DSK

SYN

3

2 - 28

2 - 115

1 K - 5 K

0.5

DRK

RSL

DLK

LVDT/RVDT

DSL

SYN

3

2 - 28

2 - 115

5 K - 10 K

0.5

DRL

RSL

DLL

LVDT/RVDT

DSM

SYN

3

2 - 28

2 - 115

10 K - 20 K

0.5

DRM

RSL

DLM

LVDT/RVDT

DSN

SYN

3

28 - 90

2 - 115

47 - 1 K

0.5

DRN

RSL

DLN

LVDT/RVDT

DSZ

SYN

3

Z

Z

Z

Z

Z = TBD; special configuration, requires special part number code designation, contact factory

DRZ

RSL

DLZ

LVDT/RVDT

SYNCHRO/RESOLVER AND LVDT/RVDT MEASUREMENT MODULE CODE TABLES

SYN/RSL Four-Channel Measurement (Field Programmable SYN/RSL)

Select the Synchro/Resolver-to-Digital (SDx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable to the design to assure that the correct default band width is set at the factory. All Input and Reference voltages are auto ranging. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

Frequency/voltage band tolerances +/- 10%.

Module ID

Input Voltage V (Vrms)

Reference Voltage (Vrms)

Frequency Range (Hz)

Notes

SD1

2 - 28

2 - 115

47 - 1 K

SD2

2 - 28

2 - 115

1K - 5 K

SD3

2 - 28

2 - 115

5K - 10 K

SD4*

2 - 28

2 - 115

10K - 20 K

SD5

28 - 90

2 - 115

47 - 1 K

SDX*

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

*Consult factory for availability

LVDT/RVDT Four-Channel Measurement (Field Programmable 2, 3 or 4-Wire)

Select the LVDT/RVDT-to-Digital (LDx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable to the design to assure that the correct default band width is set at the factory. All Input and Excitation voltages are auto ranging. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

Frequency/voltage band tolerances +/- 10%.

Module ID

Input Signal Voltage V (Vrms)

Excitation Voltage (Vrms)

Frequency Range (Hz)

Notes

LD1

2 - 28

2 - 115

47 - 1 K

LD2

2 - 28

2 - 115

1K - 5 K

LD3

2 - 28

2 - 115

5K - 10 K

LD4*

2 - 28

2 - 115

10K - 20 K

LD5

28 - 90

2 - 115

47 - 1 K

LDX*

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

*Consult factory for availability

Revision History

Motherboard Manual - 68CB6 Revision History

Revision Revision Date Description

C

2022-06-23

ECO C09407, transition to docbuilder format. Pg.9, removed 'Isolated' from ADF reference in description paragraph. Pg.12, added '+3.3_AUX' power spec to General Specifications. Pg.39, removed Module 7 Interrupt vector/steering. Pg.105, changed 'isolated' to 'non-isolated' in Principle of Operation. Pg.142, changed '…​eight individual isolated…​' to '…​eight individual nonisolated…​' in Thermocouple Capability. Pg.213, changed '…​five independent, isolated…​' to '…​five independent, non-isolated…​' in Principle of Operation. Pg.247, added '+3.3_AUX' to P0 summary. Pg.248-250, tables updated per VPX standard. Pg.254, added Single Channel note. Pg.254, changed DS/R/LE 'Power/CH maximum (VA)' from 1.5 to 2.2.

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients’ time-to-mission with a unique approach based on a Configurable Open Systems Architecture™ (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

Application Notes

Calibration and Repairs

Call Us

(631) 567-1100

Help Bot

X