Integrator Resources

The official home for NAI Support

Not sure where to start? Try Quick Start Guide or ask a question below!

Toggle Components with Visual Button
JavaScript Form Processing

3U OpenVPX ARM Computer

INTRODUCTION

North Atlantic Industries (NAI) is a leading independent supplier of rugged COTS embedded computing products for industrial, commercial aerospace, and defense markets. Aligned with MOSA, SOSA and FACE standards, NAI’s Configurable Open System Architecture™ (COSA®) accelerates a customer’s time-to-mission by providing the most modular, agile, and rugged COTS portfolio of embedded smart modules, I/O boards, Single Board Computers (SBCs), Power Supplies and Ruggedized Systems of its kind. COSA products are pre-engineered to work together, enabling easy changes, reuses, or repurposing down the road. By utilizing FPGAs and SoCs, NAI has created smart modules that enable the rapid creation of configurable mission systems while reducing or eliminating SBC overhead.

NAI’s 68ARM1 3U OpenVPX Single Board Computer (SBC) is a rugged processing board which provides low power, cost-sensitive processing capabilities designed for demanding aerospace, defense, and industrial applications. When combined with NAI’s smart modules, the board’s modular I/O approach makes it a highly flexible and integrable solution for demanding computing environments.

68ARM1 Overview

The 68ARM1 3U OpenVPX Single Board Computer (SBC) offers a variety of features designed to meet the needs of complex requirements for integrated multifunction I/O-intensive, mission-critical applications. Some of the key features include:

3U Profiles supported: This board is aligned with both VPX and OpenVPX standards, with module and slot profiles specified as

  • MOD3-PAY-1F2U-16.2.11-2

  • SLT3-PAY-1F2U-14.2.12

This compatibility ensures interoperability with other components and promote system-level integration for efficient optimized performance.

Connection Flexibility: The SBC provides flexibility in connectivity options, with the ability to connect to devices via the front panel, rear panel, or both. This feature is particularly useful in different mounting or space-constrained scenarios.

2x 10/100/1000 Base-T and 2x 1000Base-KX Ethernet: The 68ARM1 provides optional 10/100/1000 Base-T Ethernet ports to the front and rear of the board and 1000Base-KX Ethernet ports to the rear of the board. These ports provide data communication capabilities and network connectivity for advanced control and data acquisition applications.

ARM® Cortex®-A9 Dual Core 800 MHz Processor: The 68ARM1 offers a significant advantage by providing enhanced processing power and efficiency. With its dual-core configuration and 800 MHz clock speed, it enables advanced computational tasks and real-time processing capabilities, making it an ideal choice for applications requiring high performance computing within a compact form factor.

512 MB DDR3 SDRAM: The SBC features a 512 MB DDR3 SDRAM, which offers users a dependable memory solution for demanding military, industrial, and aerospace environments:

  • DDR3 SDRAM’s capacity enables efficient data storage and retrieval for critical applications, while its DDR3 architecture ensures high-speed and low latency operation (crucial for real-time processing in dynamic environments).

  • DDR3 SDRAM’s ruggedized design and resistance to extreme temperatures/shock/vibration make it well-suited for deployment in demanding conditions, ensuring consistent and dependable performance in mission-critical scenarios.

32 GB SATA II NAND Flash: The 68ARM1 utilizes a SATA II NAND Flash memory capable of providing up to 32 GB of storage, offering high-capacity, durable, reliable, and rugged data storage. It is well suited for applications where data must be securely stored and accessed in challenging environmental conditions while providing a cost-effective storage solution.

Less than 10 Watts Motherboard Power Dissipation: With a power dissipation of less than 10 watts, the 68ARM1 proves a highly efficient solution, offering superior energy conservation, effective thermal management, extended mission endurance, and heightened reliability for demanding military, industrial, and aerospace applications.

Support for three independent, smart function: The SBC can support up to three independent, smart function modules based on the COSA® architecture. With over 100 modules to choose from, this allows for a wide range of input and output capabilities, including analog and digital I/O, signal generation and acquisition, and communication interfaces. Each function module slot has an independent x1 SerDes interface for motherboard-to-smart module interface, to offload the host processor from I/O management.

  • The 68ARM1’s function slot #2 supports high-speed I/O via rear I/O while function slot #3 supports on-board module or independent external SATA II port access over the VPX backplane. These interfaces facilitate the expansion of external host SBC functions, which enables engineers and system architects to easily configure the board with the necessary modules and accelerate SWaP-optimized system deployment.

Peripheral I/O: The 68ARM1 board features several sophisticated on-board (on motherboard) peripheral I/O interfaces, all of which are rear accessed. Designed to meet the diverse requirements of complex projects, this comprehensive I/O suite includes:

  • One USB 2.0 interface to front maintenance J5 or to the rear I/O, enabling users to transfer data quickly and reliably.

  • An RS-232 console/maintenance port (front and rear) that provides a standard interface for communicating with the board for maintenance and debugging purposes. This serial port can be used for configuring the board or accessing diagnostic information and logs.

Continuous Background Built-In-Test (BIT): Continuously monitoring the board’s health and functionality during operation, this feature allows for proactive maintenance, minimizing downtime and facilitating early issue resolution for uninterrupted performance in demanding operational environments.

Software Support Kits (SSKs): SSKs are provided ‘free of charge' and include base motherboard and function module API libraries and documentation. Sample and source code are also available, as well as support for real-time operating systems (RTOS) such as Wind River® VxWorks®, Xilinx® PetaLinux, and DDC-I Deos™, providing developers with flexibility and customization options for their specific application needs.

VICTORY Interface Services: NAI offers VICTORY Interface Services as an option, providing an open industry-standard approach for integrating different components in a system.

Commercial and rugged mechanical options: The 68ARM1 is available in both commercial and rugged models, making it suitable for a wide range of applications.

  • Operating temperature: The board has a wide operating temperature range, with models operating from:

    • 0° C to 70° C (commercial model)

    • -40° C to +85° C (rugged model)

SOFTWARE SUPPORT

The ENAIBL Software Support Kit (SSK) is supplied with all system platform based board level products. This platform’s SSK contents include html format help documentation which defines board specific library functions and their respective parameter requirements. A board specific library and its source code is provided (module level ‘C’ and header files) to facilitate function implementation independent of user operating system (O/S). Portability files are provided to identify Board Support Package (BSP) dependent functions and help port code to other common system BSPs. With the use of the provided help documentation, these libraries are easily ported to any 32-bit O/S such as RTOS or Linux.

The latest version of a board specific SSK can be downloaded from our website www.naii.com in the software downloads section. A Quick-Start Software Manual is also available for download where the SSK contents are detailed, Quick-Start Instructions provided and GUI applications are described therein. For other operating system support, contact factory.

SPECIFICATIONS

General for the Motherboard

Signal Logic Level:

Supports LVDS PCIe ver. 2.0 bus (x1)

Power (Motherboard):

+5 VDC @ 0.70 A (typical)

±12 V @ 0 mA (certain modules may require +/-12 V for operation)

+3.3V_AUX @ <100 mA (typical)

Then add power for each individual module

Temperature, Operating:

"C" =0° C to +70° C, "H" =-40° C to +85° C (see part number)

Storage Temperature:

-55° C to +105° C

Temperature Cycling:

Each board is cycled from -40° C to +85° C for option “H”

General size

     Height:

3.94" / 100 mm (3U)

     Width:

0.8” / 20.3 mm (4HP) or 1.0" / 25.4 mm (5 HP) air cooled front panel options

     Depth:

6.3“ / 160 mm deep

Weight:

12.5 oz. (354 g) unpopulated (approx.) (convection or conduction cooled)

>> then add weight for each module (typically 1.5 oz. (42 g) each)

Specifications are subject to change without notice.

Environmental

Unless otherwise specified, the following table outlines the general Environmental Specifications design guidelines for board level products of North Atlantic Industries. All our cPCI, VME and OpenVPX boards are designed for either air or conduction cooling. All boards also incorporate appropriate stiffening to ensure performance during shock and vibration but also to assure reliable operation (lower fatigue stresses) over the service life of the product.

Parameters

Level

1 / Commercial-AC (Air Cooled)

2 / Rugged-AC (Air Cooled)

3 / Rugged-CC (Conduction Cooled)

Temperature - Operating

0° C to 70° C, AmbientH

-40° C to 85° C, AmbientI

-40° C to 85° C, at wedge lock thermal interface

Temperature - Storage

-40° C to 85° C

-55° C to 105° C

-55° C to 105° C

Humidity - Operating

0 to 95%, non-condensing

0 to 95%, non-condensing

0 to 95%, non-condensing

Humidity - Storage

0 to 95%, non-condensing

0 to 95%, non-condensing

0 to 95%, non-condensing

Vibration - SineA

2 g peak, 15 Hz - 2 kHzB

6 g peak, 15 Hz - 2 kHzB

10 g peak, 15 Hz - 2 kHzC

Vibration - RandomD

.002 g2 /Hz, 15 Hz - 2 kHz

0.04 g2 /Hz, 15 Hz - 2 kHz

0.1 g2 /Hz, 15 Hz - 2 kHzE

ShockF

20 g peak, half-sine, 11 ms

30 g peak, half-sine 11 ms

40 g peak, half-sine, 11 ms

Low PressureG

Up to 15,000 ft.

Up to 50,000 ft.

Up to 50,000 ft.

Notes:

  1. Based on sweep duration of ten minutes per axis on each of the three mutually perpendicular axes.

  2. Displacement limited to 0.10 D.A. from 15 to 44 Hz.

  3. Displacement limited to 0.436 D.A. from 15 to 21 Hz.

  4. 60 minutes per axis on each of the three mutually perpendicular axes.

  5. Per MIL-STD-810G, Method 5.14.6 Procedure I, Fig.514.6C-6 Category 7 tailored (11.65 Grms): 15 Hz - 2 kHz; ASD (PSD) at 0.04 g2/Hz between 15 Hz - 150 Hz, increasing @ 4 dB/octave from 0.04 g2/Hz to 0.1 g /Hz between 150 Hz - 300 Hz, 0.1 g2/Hz between 300 Hz - 1000 Hz, decreasing @ 6 dB/octave from 0.1 g2/Hz to 0.025 g2/Hz between 1000 Hz - 2000 Hz. Three hits per direction per axis (total of 18 hits).

  6. Three hits per direction per axis (total of 18 hits).

  7. For altitudes higher than 50,000 ft., contact NAI.

  8. High temperature operation requires 350 lfm minimum air flow across cover/heatsink (module dependent).

  9. High temperature operation requires 600 lfm minimum air flow across cover/heatsink (module dependent).

Specifications subject to change without notice

REGISTER MEMORY MAP ADDRESSING

The register map address consists of the following:

  • cPCI/PCIe BAR or Base Address for the Board

  • Module Slot Base Address

  • Function Offset Address

Board Base Address

The table below lists the BAR used for access to the motherboard and module registers. The second BAR is used internally for motherboard and module firmware updates. The other cPCI/PCIe BARs not listed are not used.

NAI Boards

Device ID

Bus

Motherboard and Module Register Access

Motherboard and Module Firmware Updates

Controller/Master Boards

68ARM1

0x6884

PCIe

BAR 1

Size: Module Dependent (minimum 64K Bytes)

BAR 2

Size: 1M Bytes

Module Slot and Function Addresses

The memory map for the modules are dependent on the types of modules on the board and the order in which the modules are installed on the board as well as the firmware installed on the motherboard. The function modules are enumerated allowing for dynamic memory space allocation and therefore the “start” address of the module function register area is factory pre-defined (and read from) the Module Address register. Refer to Figure 1 for an example.

68G5 Img05

Figure 1. Register Memory Map Addressing for Motherboards with 3 Modules

Address Calculation

Motherboard Registers

Read/Write access to the motherboard registers starts with the base address for the board and then the motherboard base offset address.

For example, to address Module Slot 1 Start Address register (i.e. register address = 0x0400):

  1. Start with the base address for the board.

  2. Add the motherboard register address offset.

Motherboard Address =

Base Address + Motherboard Address Offset

= 0x0000 0400

0x0000 0000 + 0x0400

Module Registers:

Read/Write access to the Function module’s registers start with the base address of the board. Add the “content” for the Module Start Address and then, add the specific module function register offset.

For example, to address an appropriate/specific function module with a register offset:

  1. Start with the base address for the board.

  2. Add the value (contents) from the module base address offset register (contents/value of Motherboard Memory register for Module 1 (i.e., @ 0x0400) = 0x4000.

  3. Then add the specific module function Register Offset of interest (i.e., A/D Reading Ch 1 @ 0x1000)

(Function Specific) Address =

Base Address

Module Base Address Offset

Function Register Offset

= 0x0000 5000

0x0000 0000

0x4000

0x1000

REGISTER DESCRIPTIONS

Module Information Registers

The Module Slot Addressing Ready, Module Slot Address, Module Slot Size and Module Slot ID provide information about the modules detected on the board.

Module Slot Addressing Ready

Function: Indicates that the module slots are ready to be addressed.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: 0xA5A5A5A5

Operational Settings: This register will contain the value of 0xA5A5A5A5 when the module addresses have been determined.

Module Slot Address

Function: Specifies the Base Address for the module in the specific slot position.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Based on board’s module configuration.

Operational Settings: 0x0000 0000 indicates no Module found.

Module Slot Size

Function: Specifies the Memory Size (in bytes) allocated for the module in the specific slot position.

Type: unsigned binary word (32-bit)

Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Assigned by factory for the module.

Operational Settings: 0x0000 0000 indicates no Module found.

Module Slot ID

Function: Specifies the Model ID for the module in the specified slot position.

Type: 4-character ASCII string

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Assigned by factory for the module.

Operational Settings: The Module ID is formatted as four ASCII bytes: three characters followed by a space. Module IDs are in little-endian order with a single space following the first three characters. For example, 'TL1' is '1LT', 'SC1' is '1CS' and so forth. Example below is for “TL1” (MSB justified). All value of 0000 0000 indicates no Module found.

Table 1. Module Slot ID

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: 'T' - 0x54)

ASCII Character (ex: 'L' - 0x4C)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: '1' - 0x31)

ASCII Space (' ' - 0x20)

Hardware Information Registers

The registers identified in this section provide information about the board’s hardware.

Product Serial Number

Function: Specifies the Board Serial Number.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Serial number assigned by factory for the board.

Operational Settings: N/A

Platform

Function: Specifies the Board Platform Identifier. Values are for the ASCII characters for the NAI valid platforms (Identifiers).

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Platform Identifier of the board

Operational Settings: Valid NAI platform and the associated value for the platform is shown below:

NAI Platform

Platform Identifier

ASCII Binary Values (Note: little-endian order of ascii values)

3U VPX

68

0x0000 3836

Model

Function: Specifies the Board Model Identifier. Value is for the ASCII characters for the NAI valid model.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Model Identifier of the board

Operational Settings: Example of NAI model and the associated value for the model is shown below:

NAI Model

ASCII Binary Values (Note: little-endian order of ascii values)

ARM

0x004D 5241

Generation

Function: Specifies the Board Generation. Identifier values are for the ASCII characters for the NAI valid generation identifiers.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Generation Identifier of the board

Operational Settings: Example of NAI generation and the associated value for the generation is shown below:

NAI Generation

ASCII Binary Values (Note: little-endian order of ascii values)

1

0x0000 0031

Processor Count/Ethernet Count

Function: Specifies the Processor Count and Ethernet Count

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Operational Settings:

     Processor Count - Integer: indicates the number of unique processor types on the motherboard.

NAI Board

Processor Count

Description

3U-VPX

68ARM1

1

Xilinx Zynq 7015 with Dual Core Cortex A9

     Ethernet Interface Count - Indicates the number of Ethernet interfaces on the product motherboard. For example, Single Ethernet = 1; Dual Ethernet = 2.

Table 2. Processor/Ethernet Interface Count

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Processor Count (See Table)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ethernet Count (Based on Part Number Ethernet Options)

Maximum Module Slot Count/ARM Platform Type

Function: Specifies the Maximum Module Slot Count and ARM Platform Type.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Operational Settings:

     Maximum Module Slot Count - Indicates the number of modules that can be installed on the product.

     ARM Platform - Altera = 1; Xilinx X1 = 2; Xilinx X2 = 3; UltraScale = 4

NAI Board

Maximum Module Slot Count

ARM Platform Type

3U-VPX

68ARM1

3

Xilinx X2 = 3

Table 3. Maximum Module Slot Count / ARM Platform Type

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Maximum Module Slot Count (See Table)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ARM Platform Type (See Table)

Motherboard Firmware Information Registers

The registers in this section provide information on the revision of the firmware installed on the motherboard.

Motherboard Core (MBCore) Firmware Version

Function: Specifies the Version of the NAI factory provided Motherboard Core Application installed on the board.

Type: Two (2) unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The motherboard firmware version consists of four components: Major, Minor, Minor 2 and Minor 3.

Table 4. Motherboard Core Firmware Version (Note: little-endian order in register) (ex. 4.7.0.0)

Word 1 (Ex. 0007 0004 = 4.7 (Major.Minor)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minor (ex: 0x0007 = 7)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Major (ex: 0x0004 = 4)

Word 2 (Ex. 0x0000 0000 = 0000 = 0.0 (Minor2.Minor3))

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minor 3 (ex: 0x000 = 0)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor 2 (ex: 0x000 = 0)

Motherboard Firmware Build Time/Date

Function: Specifies the Build Date/Time of the NAI factory provided Motherboard Core Application installed on the board.

Type: Two (2) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Operational Settings: The motherboard firmware time consists of the Build Date and Build Time.

Note
On some builds the the Date/Time fields are fixed to 0000 0000 to maintain binary consistency across builds.
Table 5. Motherboard Firmware Build Time (Note: little-endian order in register)

Word 1 - Build Date (ex. 0x030C 07E2 = 2018-12-03)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Day (ex: 0x03 = 3)

Month (ex: 0x0C = 12)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year (ex: 0x07E2 = 2018)

Word 2 - Build Time (ex. 0x001B 3B0A = 10:59:27)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

null (0x00)

Seconds (ex: 0x1B = 27)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minutes (ex: 0x3B = 59)

Hours (ex: 0x0A = 10)

Motherboard Monitoring Registers

The registers in this provide motherboard temperature measurement information, and where applicable the slave processor measurements.

Temperature Readings Register

The temperature registers provide the current, maximum (from power-up) and minimum (from power-up) for the processor and PCB for Zynq processor, and for the Slave processor.

These registers are only available on Xilinx Generation 5 platforms, and are periodically populated by the motherboard core application, which only runs in Petalinux and BareMetal. For other operating systems, refer to the naibrd Software Support Kit (SSK) naibsp_system_Monitor_Temperature_Get() routine to manually retrieve the temperature (NOTE: this feature is typically utilized for development/factory use only; contact the factory for additional details on potential use, if required).

Function: Specifies the Measured Temperatures on Motherboard.

Type: signed byte (8-bits) for each temperature reading - Six (6) 32-bit words

Data Range: 0x0000 0000 to 0xFFFF 0000

Read/Write: R

Initialized Value: Value corresponding to the measured temperatures based on the table below.

Operational Settings: The 8-bit temperature readings are signed bytes. For example, if the following register contains the value 0x6955 0000:

Example:

Table 6. Word 3 (Max Zynq Temperatures)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Max Zynq Core Temperature

Max Zynq PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0x00

0x00

The values would represent the following temperatures:

Temperature Measurements

Data Bits

Value

Temperature (Celsius)

Max Zynq Core Temperature

D31:D24

0x69

+105°

Max Zynq PCB Temperature

D23:D16

0x55

+85°

Temperature Readings

Table 7. Word 1 (Current Zynq Temperatures)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Zynq Core Temperature

Zynq PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0x00

0x00

Table 8. Word 2 (Current Slave Zynq Temperatures)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Slave Zynq Core Temperature

Slave Zynq PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0x00

0x00

Table 9. Word 3 (Max Zynq Temperatures)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Max Zynq Core Temp

Max Zynq PCB Temp

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0x00

0x00

Table 10. Word 4 (Max Slave Zynq Temperatures)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Max Slave Zynq Core Temp

Max Slave Zynq PCB Temp

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Table 11. Word 5 (Min Zynq Temperatures)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Min Zynq Core Temperature

Min Zynq PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Table 12. Word 6 (Min Slave Zynq Temperatures)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Min Slave Zynq Core Temperature

Min Slave Zynq PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Higher Precision Temperature Readings Register

These registers provide higher precision readings of the current Zynq and PCB temperatures.

Higher Precision Zynq Core Temperature

Function: Specifies the Higher Precision Measured Zynq Core temperature on Interface Board.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Zynq Core temperature on Interface Board

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x002B 0271, this represents Zynq Core Temperature = 43.625° Celsius, and value 0xFFF6 0177 represents -10.375° Celsius.

Table 13. Higher Precision Zynq Core Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Motherboard PCB Temperature

Function: Specifies the Higher Precision Measured Motherboard PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Motherboard PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x0020 007D, this represents Interface PCB Temperature = 32.125° Celsius, and value 0xFFE8 036B represents -24.875° Celsius.

Table 14. Higher Precision Motherboard PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Motherboard Health Monitoring Registers

The registers in this section provide a summary of motherboard temperature sensors and their corresponding bits. Additionally, this section provides an overview of the registers allocated to those sensors, which are used to monitor current/minimum/maximum temperature readings, upper & lower critical/warning temperature thresholds, and whether or not a programmed temperature threshold has been exceeded.

These registers are only available on Xilinx Generation 5 platforms, and are periodically populated by the motherboard core application, which only runs in Petalinux and BareMetal. For other operating systems, refer to the naibrd Software Support Kit (SSK) naibsp_system_Monitor_Temperature_Get() routine to manually retrieve the temperature (NOTE: this feature is typically utilized for development/factory use only; contact the factory for additional details on potential use, if required).

Motherboard Sensor Summary Status

Function: The corresponding sensor bit is set if the sensor has crossed any of its thresholds.

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: This register provides a summary for motherboard sensors. When the corresponding sensor bit is set, the Sensor Threshold Status register for that sensor will indicate the threshold condition that triggered the event.

Table 15. Motherboard Sensor Summary Status

Bit(s)

Sensor

D31:D5

Reserved

D4

Motherboard PCB Temperature

D3

Zynq Core Temperature

D2:D0

Reserved

Motherboard Sensor Registers

The registers listed in this section apply to each module sensor listed for the Motherboard Sensor Summary Status register. Each individual sensor register provides a group of registers for monitoring motherboard temperatures readings. From these registers, a user can read the current temperature of the sensor in addition to the minimum and maximum temperature readings since power-up. Upper and lower critical/warning temperature thresholds can be set and monitored from these registers. When a programmed temperature threshold is crossed, the Sensor Threshold Status register will set the corresponding bit for that threshold. The figure below shows the functionality of this group of registers when accessing the Zynq Core Temperature sensor as an example.

MB Sensor Registers

Sensor Threshold Status

Function: Reflects which threshold has been crossed

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: The associated bit is set when the sensor reading exceed the corresponding threshold settings.

Table 16. Sensor Threshold Status

Bit(s)

Description

D31:4

Reserved

D3

Exceeded Upper Critical Threshold

D2

Exceeded Upper Warning Threshold

D1

Exceeded Lower Critical Threshold

D0

Exceeded Lower Warning Threshold

Sensor Current Reading

Function: Reflects current reading of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents current sensor reading as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Minimum Reading

Function: Reflects minimum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents minimum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Maximum Reading

Function: Reflects maximum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents maximum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Lower Warning Threshold

Function: Reflects lower warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC220 0000 represents temperature = -40.0° Celsius.

Sensor Lower Critical Threshold

Function: Reflects lower critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC25C 0000 represents temperature = -55.0° Celsius.

Sensor Upper Warning Threshold

Function: Reflects upper warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42AA 0000 represents temperature = 85.0° Celsius.

Sensor Upper Critical Threshold

Function: Reflects upper critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42FA 0000 represents temperature = 125.0° Celsius.

Ethernet Configuration Registers

The registers in this section provide information about the Ethernet Configuration for the two ports on the board.

Important: Regardless if the board is configured for one or two Ethernet ports, the second IP address cannot be on the same Subnet as the First IP Address. The table below provides examples of valid and invalid IP Addresses and Subnet Mask Addresses.

First Port (A) IP Address

First Port (A) Subnet Mask

Second Port (B) IP Address

Second Port (B) Subnet Mask

Result

192.168.1.5

255.255.255.0

192.168.2.5

255.255.255.0

Good

192.168.1.5

255.255.0.0

192.168.2.5

255.255.0.0

Conflict

192.168.1.5

255.255.0.0

192.168.2.5

255.255.255.0

Conflict

10.0.0.15

255.0.0.0

192.168.1.5

255.255.255.0

Good

Ethernet MAC Address and Ethernet Settings

Function: Specifies the Ethernet MAC Address and Ethernet Settings for the Ethernet port.

Type: Two (2) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet MAC Address consists of six octets. The Ethernet Settings are defined in table.

Table 17. Ethernet Settings

Bits

Description

Values

D31:D23

Reserved

0

D22:D21

Duplex

00 = Not Specified, 01 = Half Duplex, 10 = Full Duplex, 11 = Reserved

D20:D18

Speed

000 = Not Specified, 001 = 10 Mbps, 010 = 100 Mbps, 011 = 1000 Mbps, 100 = 2500 Mbps, 101 = 10000 Mbps, 110 = Reserved, 111 = Reserved

D17

Auto Negotiate

0 = Enabled, 1 = Disabled

D16

Static IP Address

0 = Enabled, 1 = Disabled

Table 18. Ethernet MAC Address and Ethernet Settings (Note: little-endian order in register)

Word 1 (Ethernet MAC Address (Octets 1-4)) (ex: aa:bb:cc:dd:ee:ff)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

MAC Address Octet 4 (ex: 0xDD)

MAC Address Octet 3 (ex: 0xCC)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

MAC Address Octet 2 (ex: 0xBB)

MAC Address Octet 1 (ex: 0xAA)

Word 2 (Ethernet MAC Address (Octets 5-6) and Ethernet Settings)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ethernet Settings (See table)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

MAC Address Octet 6 (ex: 0xFF)

MAC Address Octet 5 (ex: 0xEE)

Ethernet Interface Name

Function: Specifies the Ethernet Interface Name for the Ethernet port.

Type: 8-character ASCII string

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet Interface Name (eth0, eth1, etc) for the Ethernet port.

Table 19. Ethernet Interface Name (Note: little-endian order in register) (ex. “eth0”)*

Word 1 (Bit 0-31) (ex: 0x3068 7465 = “0hte”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: '0' - 0x30)

ASCII Character (ex: 'h' - 0x68)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: 't' - 0x74)

ASCII Character (ex: 'e' - 0x65)

Word 2 (Bit 32-63) (ex: 0x0000 0000)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: null - 0x00)

ASCII Character (ex: null - 0x00)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: null - 0x00)

ASCII Character (ex: null - 0x00)

Ethernet IPv4 Address

Function: Specifies the Ethernet IPv4 Address for the Ethernet port.

Type: Three (3) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet IPv4 Address consists of three parts: IPv4 Address, IPv4 Subnet Mask and IPv4 Gateway.

Table 20. Ethernet IPv4 Address (Note: little-endian order in register)

Word 1 (Ethernet IPv4 Address) (ex: 0x1001 A8C0 = 192.168.1.16)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Address Octet 4 (ex: 0x10 = 16)

IPv4 Address Octet 3 (ex: 0x01 = 1)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Address Octet 2 (ex: 0xA8 = 168)

IPv4 Address Octet 1 (ex: 0xC0 = 192)

Word 2 (Ethernet IPv4 Subnet) (ex: 0x00FF FFFF = 255.255.255.0)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Subnet Octet 4 (ex: 0x00 = 0)

IPv4 Subnet Octet 3 (ex: 0xFF = 255)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Subnet Octet 2 (ex: 0xFF = 255)

IPv4 Subnet Octet 1 (ex: 0xFF = 255)

Word 3 (Ethernet IPv4 Gateway) (ex: 0x0101 A8C0 = 192.168.1.1)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Gateway Octet 4 (ex: 0x01 = 1)

IPv4 Gateway Octet 3 (ex: 0x01 = 1)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Gateway Octet 2 (ex: 0xA8 = 168)

IPv4 Gateway Octet 1 (ex: 0xC0 = 192)

Ethernet IPv6 Address

Function: Specifies the Ethernet IPv6 Address for the Ethernet port.

Type: Five (5) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The IPv6 Prefix length indicates the network portion of an IPv6 address using the following format:

  • IPv6 address/prefix length

  • Prefix length can range from 0 to 128

  • Typical prefix length is 64

The following is an illustration of IPv6 addressing with IPv6 Prefix length of 64.

64 bits

64 bits

Prefix

Interface ID

Prefix 1

Prefix 2

Prefix 3

Subnet ID

Interface ID 1

Interface ID 2

Interface ID 3

Interface ID 4

Example: 2002:c0a8:101:0:7c99:d118:9058:1235/64

2002

C0A8

0101

0000

7C99

D118

9058

1235

Table 21. Ethernet IPv6 Address (Note: little-endian order within 32-bit and 16-bit words in register) (ex. IPv6 Address: 2002:c0a8:101:0:7c99:d118:9058:1235 IPv6 Prefix: 64)

Word 1 (Ethernet IPv6 Address (Prefix 1-2)) (ex:0xA8C0 0220 = 2002 C0A8)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Prefix 2 (ex: 0xA8C0 = C0A8)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix 1 (ex: 0x0220 = 2002)

Word 2 (Ethernet IPv6 Address (Prefix 3/Subnet ID)) (ex:0x000 0101 = 0101 0000)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Subnet ID (ex: 0x0000 = 0000)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix 3 (ex: 0x0101 = 0101)

Word 3 (Ethernet IPv6 Address (Interface ID 1-2)) (ex: 0x18D1 997C = 7C99 D118)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Interface ID 2 (ex: 0x18D1 = D118)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Interface ID 1 (ex: 0x997C = 7C99)

Word 4 (Ethernet IPv6 Address (Interface ID 3-4)) (ex: 0x3512 5890 = 9058 1235)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Interface ID 4 (ex: 0x3512 = 1235)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Interface ID 3 (ex: 0x5890 = 9058)

Word 5 (Ethernet IPv6 Prefix Length) (ex:0x0000 0040)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix Length (ex: 0x0040 = 64)

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Note
The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Sets where to direct the interrupt.

Type: unsigned binary word (32-bit)

Data Range: See table Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME

1

Direct Interrupt to ARM Processor (via SerDes) (Custom App on ARM or NAI Ethernet Listener App)

2

Direct Interrupt to PCIe Bus

5

Direct Interrupt to cPCI Bus

6

Module Control Command Registers

Function: Provides the ability to command individual Modules to Reset, Power-down, or Power-up.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Operational Settings: The Module Control Commands registers provide the ability to request individual Modules to perform one of the following functions – Reset, Power-down, Power-up. Only one command can be requested at a time per Module. For example, one can’t request a Reset and a Power-down at the same time for the same Module. Once the command is recognized and handled, the bit will be cleared.

Note
Clearing of the command request bit only indicates the command has been recognized and initiated, it does not indicate that the command action has been completed.

There is one Control Command Request register per Module. Each register is Bit-mapped as shown in the table below:

Table 22. Module Command Requests

Bit(s)

Description

D31:D3

Reserved

D2

Module Power-up

D1

Module Power-down

D0

Module Reset

Modules Health Monitoring Registers

Module Communications Status

Function: Provides the ability to monitor factors may effect communication status of a Module.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The Module Communications registers provide the ability to monitor factors that may effect the Communications Status of individual Modules. There is one register per Module. Each communication factor is bit mapped to the register as shown in the table below:

Table 23. Module Communications Status

Bit(s)

Description

D31:D5

Reserved

D4

Module Communications Error Detected

D3

Module Firmware Not Ready

D2

Module LinkInit Not Done

D1

Module Not Detected

D0

Module Powered-down

Module Powered-down: The user can request an individual Module be powered-down (see Module Control Command Requests). Once the request is detected and acted upon, this bit will be set. Once powered-down, you will not be able to communicate with the Module.

Module Not Detected: If a Module in this slot has not been detected, you will not be able to communicate with the Module.

Module LinkInit Not Done: Module communications is accomplished via SERDES. LinkInit is required to establish a connection to the Module. If the LinkInit has not been successfully completed, you will not be able to communicate with the Module.

Module Firmware Not Ready: Each Module has Firmware that is ready from Module QSPI and loaded for execution. If this Firmware was not loaded and started successfully, you may not be able to communicate with the Module.

Module Communications Error Detected: If at some point during run-time, communications with the Module has failed, this bit will be set.

Module BIT Status

Function: Provides the ability to monitor the individual Module BIT Status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The Module BIT Status registers provide the ability to monitor individual Module BIT results as Latched and current value. A 1 is any bit field indicates BIT failure for the Module in that slot.

Table 24. Module BIT Status

Bit(s)

Description

D31:D20

Reserved

D19

Module Slot 3 BIT Failure (current value)

D18

Module Slot 2 BIT Failure (current value)

D17

Module Slot 1 BIT Failure (current value)

D16

Reserved

D15:D4

Reserved

D3

Module Slot 3 BIT Failure - Latched

D2

Module Slot 2 BIT Failure - Latched

D1

Module Slot 1 BIT Failure - Latched

D0

Reserved

Scratchpad Area

Function: Registers reserved as scratch pad for customer use.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Operational Settings: This area in memory is reserved for customer use.

MOTHERBOARD FUNCTION REGISTER MAP

Key:

Bold Underline = Measurement/Status/Board Information

Bold Italic = Configuration/Control

Module Information Registers

0x03FC

Module Slot Addressing Ready

R

0x0400

Module Slot 1 Address

R

0x0404

Module Slot 2 Address

R

0x0408

Module Slot 3 Address

R

0x0430

Module Slot 1 Size

R

0x0434

Module Slot 2 Size

R

0x0438

Module Slot 3 Size

R

0x0460

Module Slot 1 ID

R

0x0464

Module Slot 2 ID

R

0x0468

Module Slot 3 ID

R

Hardware Information Registers

0x0020

Product Serial Number

R

0x0024

Platform

R

0x0028

Model

R

0x002C

Generation

R

0x0030

Processor Count/Ethernet Count

R

0x0034

Maximum Module Slot Count/ARM Platform Type

R

Motherboard Firmware Information Registers

0x0100

MBCore Major/Minor Version

R

0x0104

MBCore Minor 2/3 Version

R

0x0108

MBCore Build Date (Bit 0-31)

R

Motherboard Monitoring Registers

Temperature Readings

0x0200

Current Zynq Temperatures

R

0x0204

Current Slave Zynq Temperatures

R

0x0208

Max Zynq Temperatures

R

0x020C

Max Slave Zynq Temperatures

R

0x0210

Min Zynq Temperatures

R

0x0214

Min Slave Zynq Temperatures

R

Higher Precision Temperature Readings

0x0230

Current Zynq Core Temperature

R

0x0234

Current Motherboard PCB Temperature

R

Motherboard Health Monitoring Registers

0x20F8

Motherboard Sensor Summary Status

R

health

Ethernet Configuration Registers

0x0070

Ethernet A MAC (Octets 1-4)

R

0x0074

Ethernet A MAC (Octets 5-6)/Misc Settings

R

0x0078

Ethernet A Interface Name (Bit 0-31)

R

0x007C

Ethernet A Interface Name (Bit 32-63)

R

0x0080

Ethernet A IPv4 Address

R

0x0084

Ethernet A IPv4 Subnet Mask

R

0x0088

Ethernet A IPv4 Gateway

R

0x008C

Ethernet A IPv6 Address (Prefix 1-2)

R

0x0090

Ethernet A IPv6 Address (Prefix 3/Subnet ID)

R

0x0094

Ethernet A IPv6 Address (Interface ID 1-2)

R

0x0098

Ethernet A IPv6 Address (Interface ID 3-4)

R

0x009C

Ethernet A IPv6 Prefix Length

R

0x00A0

Ethernet B MAC (Octets 1-4)

R

0x00A4

Ethernet B MAC (Octets 5-6)/Misc Settings

R

0x00A8

Ethernet B Interface Name (Bit 0-31)

R

0x00AC

Ethernet B Interface Name (Bit 32-63)

R

0x00B0

Ethernet B IPv4 Address

R

0x00B4

Ethernet B IPv4 Subnet Mask

R

0x00B8

Ethernet B IPv4 Gateway

R

0x00BC

Ethernet B IPv6 Address (Prefix 1-2)

R

0x00C0

Ethernet B IPv6 Address (Prefix 3/Subnet ID)

R

0x00C4

Ethernet B IPv6 Address (Interface ID 1-2)

R

0x00C8

Ethernet B IPv6 Address (Interface ID 3-4)

R

0x00CC

Ethernet B IPv6 Prefix Length

R

Interrupt Vector and Steering

0x0500 - 0x057C

Module 1 Interrupt Vector 1 - 32

R/W

0x0700 - 0x077C

Module 2 Interrupt Vector 1 - 32

R/W

0x0900 - 0x097C

Module 3 Interrupt Vector 1 - 32

R/W

0x0600 - 0x067C

Module 1 Interrupt Steering 1 - 32

R/W

0x0800 - 0x087C

Module 2 Interrupt Steering 1 - 32

R/W

0x0A00 - 0x0A7C

Module 3 Interrupt Steering 1 - 32

R/W

Module Control Command Requests

0x01D8

Module Slot 1 Command Request

R/W

0x01DC

Module Slot 2 Command Request

R/W

0x01E0

Module Slot 3 Command Request

R/W

Modules Health Monitoring Registers

Module Communications Status

0x01B8

Module Slot 1 Communications Status

R

0x01BC

Module Slot 2 Communications Status

R

0x01C0

Module Slot 3 Communications Status

R

Module BIT Status

0x0128

Module BIT Status (current and latched)

R

Scratchpad Area

0x3800 - 0x3BFF

Scratchpad Registers

R/W

ETHERNET

(For detailed supplement, please visit the NAI web-site specific product page and refer to: Ethernet Interface for Generation 5 SBC and Embedded IO Boards Specification)

The Ethernet Interface Option allows communications and control access to all function modules either via the system BUS or Ethernet ports 1 or 2.

Ethernet 1

Ethernet 2

The default IP address:

192.168.1.16

192.168.2.16

The default subnet:

255.255.255.0

255.255.255.0

The default gateway:

192.168.1.1

192.168.2.1

Note
Actual "as shipped" card Ethernet default IP addresses may vary based upon final ATP configuration(s).) Ethernet Port IP addresses may be field re-flashed to new default programmed addressed via use of the “IP Configuring for Ethernet Supported Boards” FLASH software support kit, available/documented from the specific product web page.

The NAI interface supports IPv4 and IPv6 and both the TCP and UDP protocols. The Ethernet Operation Mode Command Listener application running on the motherboard host processor implements the operation interface. The listener is operational on startup through the nai_MBStartup process and listen on specific ports for commands to process. The default ports are listed below:

  • TCP1 - Port 52801

  • TCP2 - Port 52802

  • UDP1 - Port 52801

  • UDP2 - Port 52802

While the listener is active, note that interrupts from the motherboard do not trigger. The listener can be disabled by turning off the nai_MBStartup process through the Motherboard EEPROM. To turn off nai_MBStartup use the command mbeeprom_util set MBStartupInitOnlyFlag 1 in the console, either by serial port or telnet to the motherboard, and then reboot the system. To turn on the nai_MBStartup use the command mbeeprom_util set MBStartupInitOnlyFlag 0 in the console, either by serial port or telnet to the motherboard, and then reboot the system.

Ethernet Message Framework

The interface uses a specific message framework for all commands and responses. All messages begin with a Preamble code and end with a Postamble code. The message framework is shown below.

Preamble

2 bytes Always 0xD30F

SequenceNo

2 bytes

Type Code

2 byte

Message Length

(2 bytes)

Payload

(0..1414 bytes)

Postamble

2 bytes Always 0xF03D

Message Elements

Preamble

The Preamble is used to delineate the beginning of a message frame. The Preamble is always 0xD30F.

SequenceNo

The SequenceNo is used to associate Commands with Responses.

Type Code

Type Codes are used to define the type of Command or Response the message contains.

Message Length

The Message Length is the number of bytes in the complete message frame starting with and including the Preamble and ending with and including the Postamble.

Payload

The Payload contains the unique data that makes up the command or response. Payloads vary based on command type.

Postamble

The Postamble is use to delineate the end of a message frame. The Postamble is always 0xF03D.

Notes

  1. The messaging protocol applies only to card products.

  2. Messaging is managed by the connected (client) computer. The client computer will send a single message and wait for a reply from the card. Multiple cards may be managed from a single computer, subject to channel and computer capacity.

Board Addressing

The interface provides two main addressing areas: Onboard and Off-board.

Onboard addressing refers to accessing resources located on the board that is implementing the operation interface (including its modules).

Off-board addressing refers to accessing resources located on another board reachable via VME, PCI, or other bus. Off-board addressing requires a Master/Slave configuration.

The user must always specify if a particular address is Onboard or Off-board. See the command descriptions for the onboard and off-board flags.

Within a particular board (Onboard or Off-board), the address space is broken up into two areas: Motherboard Common Address Space and Module Address Space. All addresses are 32-bit.

Motherboard Common Address Space starts at 0x00000000 and ends at 0x00004000. This is a 4Kx32-bit address space (16 kbytes).

Module Address Space starts at 0x00004000. Module addressing is dynamically configured at startup. NAI boards support between 1 and 6 modules. The minimum module address space size is 4Kx32 (16 kbytes) and module sizes are always a multiple of 4Kx32.

Module addressing is dynamic and cumulative. The first detected module (starting with Slot 1) is given an address of 0x00004000. The 2nd detected Module is given an address of:

First_Detected_Module_Address + First_Detected_Module_Size

Note
Slots do not define addresses.

If no module is detected in a module slot, that slot is not given an address. Therefore, if the first detected Module is in Slot 2, then that module address will be 0x00004000. If the next detected module is in Slot 4, then the address of that Module will be:

Second_Detected_Module_Address = First_Detected_Module_Address + First_Detected_Module_Size

If a 3rd Module is detected in Slot 6, then the address of that Module will be:

Third_Detected_Module_Address = Second_Detected_Module_Address + Second_Detected_Module_Size

Note
Module addresses are calculated at each board startup when the modules are detected. Therefore, if a module should fail to be detected due to malfunction or because it was removed from the motherboard, the addresses of the modules that follow it in the slot sequence will be altered. This is important to note when programming to this interface.

Users can always retrieve the Module Addresses, Module Sizes and Module IDs from the fixed Motherboard Common address area. This data is set upon each board startup. While the Module Addressing is dynamic, the address where these addresses are stored is fixed. For example, to find the startup address of the module location in Slot 3, refer to the MB Common Address 0x00000408 from the Motherboard Common Addresses table that follows.

Ethernet Wiring Convention

RJ-45 Pin

T568A Color

T568B Color

10/100Base-T

1000BASE-T

NAI wiring convention

1

white/green stripe

white/orange stripe

TX+

DA+

ETH-TP0+

2

green

orange

TX-

DA-

ETH-TP0-

3

white/orange stripe

white/green stripe

RX+

DB+

ETH-TP1+

4

blue

blue

DC+

ETH-TP2+

5

white/blue stripe

white/blue stripe

DC-

ETH-TP2-

6

orange

green

RX-

DB-

ETH-TP1-

7

white/brown stripe

white/brown stripe

DD+

ETH-TP3+

8

brown

brown

DD-

ETH-TP3-

68ARM1 CONNECTOR/PIN-OUT INFORMATION

Front and Rear Panel Connectors

The 68ARM1 3U OpenVPX SBC & Multifunction I/O board is available in two configurations: convection-cooled and conduction-cooled. The 68ARM1 follows the OpenVPX “Payload Slot Profile” configured as:

Slot profile: SLT3-PAY-1F2U-14.2.12

Module profile: MOD3-PAY-1F2U-16.2.11-2

User I/O is available through the (J3, J4) front panel connectors when card is configured with front panel I/O and through the OpenVPX user defined rear I/O connectors P1, P2 (see part number and pin-out information).

68G5E img6

Front Panel Connectors J3, J4 (Convection-Cooled)

50-pin male connectors, 2 mm, Harwin P/N M80-5S25022M3.

Mate kit: Harwin M80-486 product family (mating connector kit is available from Harwin as P/N M80-9415005). This mating connector may be purchased separately under NAI P/N 05-0118 (contact factory).

Utility Connector J5

Industry standard mini-HDMI type (type-C receptacle).

Panel LEDs

Front Panel LEDs indications (only available on air-cooled units).

LED

ILLUMINATED

EXTINGUISHED

GRN

Blinking: initializing

Steady On: Power-On/Ready

Power Off

RED

Module BIT error

No BIT fault

YELLOW (flashing)

Card Access (bus or Gig-E activity)

No card activity

front panel

Chassis Ground

Front Panel: No dedicated chassis GND pins available. Jack screw sockets are chassis GND.

Rear connector key guides are chassis ground.

Front Panel System (Power/Signal) Ground Reference

Front Panel: J3 pins 1, 26; J4 pins 25, 50 (connected to card power/system ground).

Front I/O Utility Connector J5 (Convection and Conduction-Cooled)

The 68ARM1 utilizes a Mini-HDMI (Type-C) type card edge connector J5, available on either convection or conduction-cooled configurations that provides the following signals:

  • USB

  • Serial (RS-232 debug/console only)

  • Ethernet port 1 (factory configuration option – Ethernet port1 may be redirected to rear I/O J2)

NAI also provides an optional “breakout” adapter board (NAI P/N 75SBC4-BB) with a mini-HDMI to mini-HDMI type cable. The “breakout” adapter board and a Micro-HDMI cable (NAI P/N 75SBC4-BB) allow for standard I/O connections to Ethernet and asynchronous serial (DB9). Consult the factory for availability.

Front J5 Standard Configuration

J5-01

N/C

J5-02

ETH1-TP0+ (option)

J5-03

ETH1-TP0- (option)

J5-04

N/C

J5-05

ETH1-TP1+ (option)

J5-06

ETH-TP1- (option)

J5-07

N/C

J5-08

ETH1-TP2+ (option)

JT-09

ETH1-TP2- (option)

J5-10

N/C

J5-11

ETH1-TP3+ (option)

J5-12

ETH1-TP3- (option)

J5-13

GND

J5-14

+5V-USB

J5-15

USB-DP

J5-16

USB-DM

J5-17

SER1-RXD

J5-18

SER1-TXD

J5-19

GND

Note
N/C = not connected
conduction

Signal Descriptions J5

Signal Name

Description

ETH1-TPx

Ethernet port 1 signals (4 pair) 10/100/1000 twisted pair signals (Optional - available only if NOT re-directed to rear I/O (see part number configuration options)

USB-DP

Front Panel USB Data Plus

USB-DM

Front Panel USB Data Minus

SER1-TXD

Asynchronous transmit serial data port 1 (out) / RS232 debug/console port only

SER1-RXD

Asynchronous received serial data port 1 (in) / RS232 debug/console port only

GND

System Ground (return)

Rear I/O VPX Connectors P0-P2 (Conduction-Cooled)

The 68ARM1 3U OpenVPX SBC and Multifunction I/O board provides interface via the rear VPX connectors.

Rear I/O Summary

P0 - Utility plane. Contains the following signal definitions:

Power:

Primary +5V, +3.3V_AUX, +/- 12V and System GND

Geographical Address Pins:

GA0# - GA4#, GAP#

Card reset:

SYSRST# signal

VPX AUX/REF CLK

(as/if applicable)

P1 - Defined as primarily Data/Control Planes (User defined I/O secondary)

High Speed Switched Fabric Interface:

Root-complex ultra-thin pipes; four (4) PCIe ver. 2.0 (x1) ports.

Ethernet:

Dual Gig-E port option(s) are available and defined (See Part Number Designation section)

P2 - User defined I/O (primary)

reario

Rear I/O Utility Plane (P0)

The P0 (Utility) Plane contains the primary power, bus and utility signals for the OpenVPX board. Additionally, several of the user defined pins can be utilized for Geographical Addressing and a parallel SYSRST# signal. Signals defined as N/C currently have no functionality associated and is not required for general operation.

68ARM1 P0 pinouts
p0

Rear I/O Data/Control Planes (P1)

The 68ARM1 is a root-complex SBC with four (4) PCIe ver. 2.0 x1 high-speed serial interface fabric bus lanes. As defined in the OpenVPX payload slot specifications, the 68ARM1 provides four 'ultra-thin pipe' (one Tx and one Rx differential pair), which provides additional user I/O definition opportunity. Additionally, the 68ARM1 can be commanded/controlled via dual port Gig-E (options for either 10/100/1000Base-T and/or 1000Base-KX (SerDes) Interfaces). Additional module I/O is also defined on the P1 user defined plane. Signals defined as N/C currently have no functionality associated or are considered optional and are not required for general operation.

p1
p1 table

USER I/O - Defined Area (User Defined I/O) (P2)

The following pages contain the ‘user defined’ I/O data area front and rear panel pin-outs with their respective signal designations for all module types currently offered/configured for the 68ARM1 platform. The card is designed to route the function module I/O signals to the front and rear I/O connector. The following I/O connector pin-out is based upon the function module designated in the module slot. Signals defined as N/C currently have no functionality associated or are considered optional and are not required for general operation.

p2
68ARM1 P2 pinouts

J3/J4 Front Panel Connector Pinout Mapping Summary (Convection-Cooled)

The following provides connector/pinout data for Front Panel connectors J3 and J4. Each connector provides 50 pins of I/O.

j3j4

Front Panel Connectors J3/J4 Generic User I/O Mapping

Table 25. 68ARM1 J3 (M1, M3) Front Panel I/O

(System Ground REF)

GND

1

26

GND

(System Ground REF)

M3_DAT01

S-MOD-M3-DAT01

2

27

S-MOD-M3-DAT02

M3_DAT02

M3_DAT03

S-MOD-M3-DAT03

3

28

S-MOD-M3-DAT04

M3_DAT04

M3_DAT25

S-MOD-M3-DAT25

4

29

S-MOD-M3-DAT26

M3_DAT26

M3_DAT05

S-MOD-M3-DAT05

5

30

S-MOD-M3-DAT06

M3_DAT06

M3_DAT07

S-MOD-M3-DAT07

6

31

S-MOD-M3-DAT08

M3_DAT08

M3_DAT09

S-MOD-M3-DAT09

7

32

S-MOD-M3-DAT10

M3_DAT10

M3_DAT27

S-MOD-M3-DAT27

8

33

S-MOD-M3-DAT28

M3_DAT28

M3_DAT11

S-MOD-M3-DAT11

9

34

S-MOD-M3-DAT12

M3_DAT12

M1_DAT01

S-MOD-M1-DAT01

10

35

S-MOD-M1-DAT02

M1_DAT02

M1_DAT03

S-MOD-M1-DAT03

11

36

S-MOD-M1-DAT04

M1_DAT04

M1_DAT25

S-MOD-M1-DAT25

12

37

S-MOD-M1-DAT26

M1_DAT26

M1_DAT05

S-MOD-M1-DAT05

13

38

S-MOD-M1-DAT06

M1_DAT06

M1_DAT07

S-MOD-M1-DAT07

14

39

S-MOD-M1-DAT08

M1_DAT08

M1_DAT09

S-MOD-M1-DAT09

15

40

S-MOD-M1-DAT10

M1_DAT10

M1_DAT27

S-MOD-M1-DAT27

16

41

S-MOD-M1-DAT28

M1_DAT28

M1_DAT11

S-MOD-M1-DAT11

17

42

S-MOD-M1-DAT12

M1_DAT12

M1_DAT13

S-MOD-M1-DAT13

18

43

S-MOD-M1-DAT14

M1_DAT14

M1_DAT15

S-MOD-M1-DAT15

19

44

S-MOD-M1-DAT16

M1_DAT16

M1_DAT29

S-MOD-M1-DAT29

20

45

S-MOD-M1-DAT30

M1_DAT30

M1_DAT17

S-MOD-M1-DAT17

21

46

S-MOD-M1-DAT18

M1_DAT18

M1_DAT19

S-MOD-M1-DAT19

22

47

S-MOD-M1-DAT20

M1_DAT20

M1_DAT21

S-MOD-M1-DAT21

23

48

S-MOD-M1-DAT22

M1_DAT22

M1_DAT31

S-MOD-M1-DAT31

24

49

S-MOD-M1-DAT32

M1_DAT32

M1_DAT23

S-MOD-M1-DAT23

25

50

S-MOD-M1-DAT24

M1_DAT24

Notes

GND

System defined and not user configurable

M1

Module 1 Standard I/O

M3

Module 3 Standard I/O

Table 26. 68ARM1 J4 (M2, M3) Front Panel I/O

M2_DAT01

S-MOD-M2-DAT01

1

26

S-MOD-M2-DAT02

M2_DAT02

M2_DAT03

S-MOD-M2-DAT03

2

27

S-MOD-M2-DAT04

M2_DAT04

M2_DAT25

S-MOD-M2-DAT25

3

28

S-MOD-M2-DAT26

M2_DAT26

M2_DAT05

S-MOD-M2-DAT05

4

29

S-MOD-M2-DAT06

M2_DAT06

M2_DAT07

S-MOD-M2-DAT07

5

30

S-MOD-M2-DAT08

M2_DAT08

M2_DAT09

S-MOD-M2-DAT09

6

31

S-MOD-M2-DAT10

M2_DAT10

M2_DAT27

S-MOD-M2-DAT27

7

32

S-MOD-M2-DAT28

M2_DAT28

M2_DAT11

S-MOD-M2-DAT11

8

33

S-MOD-M2-DAT12

M2_DAT12

M2_DAT13

S-MOD-M2-DAT13

9

34

S-MOD-M2-DAT14

M2_DAT14

M2_DAT15

S-MOD-M2-DAT15

10

35

S-MOD-M2-DAT16

M2_DAT16

M2_DAT29

S-MOD-M2-DAT29

11

36

S-MOD-M2-DAT30

M2_DAT30

M2_DAT17

S-MOD-M2-DAT17

12

37

S-MOD-M2-DAT18

M2_DAT18

M2_DAT19

S-MOD-M2-DAT19

13

38

S-MOD-M2-DAT20

M2_DAT20

M2_DAT21

S-MOD-M2-DAT21

14

39

S-MOD-M2-DAT22

M2_DAT22

M2_DAT31

S-MOD-M2-DAT31

15

40

S-MOD-M2-DAT32

M2_DAT32

M2_DAT23

S-MOD-M2-DAT23

16

41

S-MOD-M2-DAT24

M2_DAT24

M3_DAT13

S-MOD-M3-DAT13

17

42

S-MOD-M3-DAT14

M3_DAT14

M3_DAT15

S-MOD-M3-DAT15

18

43

S-MOD-M3-DAT16

M3_DAT16

M3_DAT29

S-MOD-M3-DAT29

19

44

S-MOD-M3-DAT30

M3_DAT30

M3_DAT17

S-MOD-M3-DAT17

20

45

S-MOD-M3-DAT18

M3_DAT18

M3_DAT19

S-MOD-M3-DAT19

21

46

S-MOD-M3-DAT20

M3_DAT20

M3_DAT21

S-MOD-M3-DAT21

22

47

S-MOD-M3-DAT22

M3_DAT22

M3_DAT31

S-MOD-M3-DAT31

23

48

S-MOD-M3-DAT32

M3_DAT32

M3_DAT23

S-MOD-M3-DAT23

24

49

S-MOD-M3-DAT24

M3_DAT24

(System Ground REF)

GND

25

50

GND

(System Ground REF)

Notes

GND

System defined and not user configurable

M2

Module 2 Standard I/O

M3

Module 3 Standard I/O

Front and Rear User I/O Mapping

Front/Rear User I/O Mapping (for reference) is shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Module Operational Manuals.

slot123

Ethernet (Rear I/O)

Optional - See Part Number Designation section for specific configuration.

The 68ARM1 provides two optional Ethernet ports that can be configured as 10/100/1000Base-T or 1000Base-KX. The dual port interface option provides flexibility for OpenVPX embedded systems as the 1000-BaseKX ports can connect direct via the backplane to CPUs or Switches supporting that interface while also supporting legacy boards and external sensors or systems requiring 1000Base-T interfaces. Either Ethernet port can support either interface, however this must be configured at factory (See Part Number Designation section).

Data Plane

Row

Row

Row

Row

Row

Row

Row

P1

G

F

E

D

C

B

A

11

(SER-TXD1)

GND

N/C (ETH2-TXN)

N/C (ETH2-TXP)

GND

N/C (ETH2-RXN)

N/C (ETH2-RXP)

12

GND

N/C (ETH1-TXN)

N/C (ETH1-TXP)

GND

N/C (ETH1-RXN)

N/C (ETH1-RXP)

GND

13

GND

GND

ETH2-TP1-

ETH2-TP1+

GND

ETH2-TP0-

ETH2-TP0+

14

GND

ETH2-TP3-

ETH2-TP3+

GND

ETH2-TP2-

ETH2-TP2+

GND

15

N/C

GND

ETH1-TP1-

ETH1-TP1+

GND

ETH1-TP0-

ETH1-TP0+

16

GND

ETH1-TP3-

ETH1-TP3+

GND

ETH1-TP2-

ETH1-TP2+

GND

ETH1-TX(RX)

Port 1 / 1000Base-KX (Option)

ETH2-TX(RX)

Port 2 / 1000Base-KX (Option)

ETH1-TPx

Port 1 /10/100/1000Base-T (Option)

ETH2-TPx

Port 2 /10/100/1000Base-T (Option)

eth

Connector Signal/Pin outs Notes

NAI Synchro/Resolver Naming Convention

Signal

Resolver

Synchro

S1

SIN(-)

X

S2

COS(+)

Z

S3

SIN(+)

Y

S4

COS(-)

No connect

Additional Pinout Notes

1. Isolated Discrete Module (DT2)

For ‘differential' A/D; “P” designation considered ‘positive' input pin, “N” pin designation considered ‘negative' input pin.

2. Discrete I/O Module (DT1)

All GND pins are common within the module, but, isolated from system/power GND. Each pin should be individually wired for optimal power current distribution.

3. TTL I/O Module (TL1)

I/O referenced to system power GND.

4. CMRP - A/D Module(s) (ADx)

The Common Mode Reference Point (CMRP) is an isolated reference connection for all the A/D channels. For expected high common mode voltage applications, it is recommended that the pin designated as CMRP be referenced (direct or resistor coupled) to the signal source GND reference (must have current path between CMRP and signal source generator) to minimize common mode voltage within the acceptable specification range. All channels within the module are independent but share a CMRP, which is isolated from system/power GND.

MECHANICAL DETAILS

General - Outline

Note
The following mechanical outline detail examples are provided for reference only. Dimensions are in inches unless otherwise specified.

Conduction Cooled

68ARM1 Img16

Outline, General, Conduction Cooled

Convection Cooled

68ARM1 Img17

Outline, General, Conduction Cooled, Blank Front Panel, 0.8” Pitch

SYNCHRO/RESOLVER AND LVDT/RVDT SIMULATION MODULE CODE TABLES

Select the Digital-to-Synchro (DSx), Digital-to-Resolver (DRx) or Digital-to-LVDT/RVDT (DLx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable the design to assure that the correct default band width is set at the factory. All Input and Reference voltages are auto ranging. Frequency/voltage band tolerances +/- 10%. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

  • Single Channel module pending availability (contact factory)

Module ID

Format

Channel(s)

Output Voltage VL-L (Vrms)

Reference Voltage (Vrms)

Frequency Range (Hz)

Power / CH maximum (VA)

Notes

DS1

SYN

1*

2 - 28

2 - 115

47 - 1 K

3

DR1

RSL

DL1

LVDT/RVDT

DS2

SYN

1*

2 - 28

2 - 115

1 K - 5 K

3

DR2

RSL

DL2

LVDT/RVDT

DS3

SYN

1*

2 - 28

2 - 115

5 K - 10 K

3

DR3

RSL

DL3

LVDT/RVDT

DS4

SYN

1*

2 - 28

2 - 115

10 K - 20 K

3

DR4

RSL

DL4

LVDT/RVDT

DS5

SYN

1*

28 - 90

2 - 115

47 - 1 K

3

DR5

RSL

DL5

LVDT/RVDT

DSX

SYN

1*

X

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

DRX

RSL

DLX

LVDT/RVDT

DSA

SYN

2

2 - 28

2 - 115

47 - 1 K

1.5

DRA

RSL

DLA

LVDT/RVDT

DSB

SYN

2

2 - 28

2 - 115

1 K - 5 K

1.5

DRB

RSL

DLB

LVDT/RVDT

DSC

SYN

2

2 - 28

2 - 115

5 K - 10 K

1.5

DRC

RSL

DLC

LVDT/RVDT

DSD

SYN

2

2 - 28

2 - 115

10 K - 20 K

1.5

DRD

RSL

DLD

LVDT/RVDT

DSE

SYN

2

28 - 90

2 - 115

47 - 1 K

2.2

DRE

RSL

DLE

LVDT/RVDT

DSY

SYN

2

Y

Y

Y

Y

Y = TBD; special configuration, requires special part number code designation, contact factory

DRY

RSL

DLY

LVDT/RVDT

DSJ

SYN

3

2 - 28

2 - 115

47 - 1 K

0.5

DRJ

RSL

DLJ

LVDT/RVDT

DSK

SYN

3

2 - 28

2 - 115

1 K - 5 K

0.5

DRK

RSL

DLK

LVDT/RVDT

DSL

SYN

3

2 - 28

2 - 115

5 K - 10 K

0.5

DRL

RSL

DLL

LVDT/RVDT

DSM

SYN

3

2 - 28

2 - 115

10 K - 20 K

0.5

DRM

RSL

DLM

LVDT/RVDT

DSN

SYN

3

28 - 90

2 - 115

47 - 1 K

0.5

DRN

RSL

DLN

LVDT/RVDT

DSZ

SYN

3

Z

Z

Z

Z

Z = TBD; special configuration, requires special part number code designation, contact factory

DRZ

RSL

DLZ

LVDT/RVDT

SYNCHRO/RESOLVER AND LVDT/RVDT MEASUREMENT MODULE CODE TABLES

SYN/RSL Four-Channel Measurement (Field Programmable SYN/RSL)

Select the Synchro/Resolver-to-Digital (SDx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable to the design to assure that the correct default band width is set at the factory. All Input and Reference voltages are auto ranging. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

Frequency/voltage band tolerances +/- 10%.

Module ID

Input Voltage V (Vrms)

Reference Voltage (Vrms)

Frequency Range (Hz)

Notes

SD1

2 - 28

2 - 115

47 - 1 K

SD2

2 - 28

2 - 115

1K - 5 K

SD3

2 - 28

2 - 115

5K - 10 K

SD4*

2 - 28

2 - 115

10K - 20 K

SD5

28 - 90

2 - 115

47 - 1 K

SDX*

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

*Consult factory for availability

LVDT/RVDT Four-Channel Measurement (Field Programmable 2, 3 or 4-Wire)

Select the LVDT/RVDT-to-Digital (LDx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable to the design to assure that the correct default band width is set at the factory. All Input and Excitation voltages are auto ranging. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

Frequency/voltage band tolerances +/- 10%.

Module ID

Input Signal Voltage V (Vrms)

Excitation Voltage (Vrms)

Frequency Range (Hz)

Notes

LD1

2 - 28

2 - 115

47 - 1 K

LD2

2 - 28

2 - 115

1K - 5 K

LD3

2 - 28

2 - 115

5K - 10 K

LD4*

2 - 28

2 - 115

10K - 20 K

LD5

28 - 90

2 - 115

47 - 1 K

LDX*

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

*Consult factory for availability

APPENDIX: EMBEDDED ARM (XILINX® XC7Z015 SOC) OPTION DETAILS

If specified, the PLATFORM (e.g. NIU1A, 75G5, etc.) provides access to an ARM processor for embedded SBC-type applications. The platform uses a Xilinx® XC7Z015 SoC FPGA device. This device is a Single-die system on a Chip (SoC) that consists of two distinct parts: an application processor unit (APU) portion and an FPGA portion. The platform may be ordered with a configuration code, which provides access to the motherboards APU ARM processor. The application processor system can then be used for customer software development.

The PLATFORM uses a Xilinx® XC7Z015 device with an ARM® Cortex®-A9 dual-core processor. The ARM processor, together with NAI’s unique architecture provides the embedded system programmer the following on- chip resources:

  • APU subsystem featuring dual ARM Cortex-A9 MPCore CPUs

  • DDR3 SDRAM controller with Transaction Scheduler

  • DMA controller with scatter-gather

  • Two Ethernet Media Access Controllers (EMACs)

  • NAND flash controller ONFI specification 1.0

  • Quad SPI flash controller

  • Two serial peripheral interface (SPI) Master or Slave controllers

  • 256 KB on-chip RAM

  • 128 KB on-chip boot ROM

  • Two UARTs with 64-byte receive and transmit FIFOs

  • Two General Purpose Timers

  • Two watchdog timers

Floating Point Unit (FPU)

The FPU is a VFPv3-D16 implementation of the ARMv7 floating-point architecture. It provides high performance, floating-point computation. The FPU supports all addressing modes and operations described in the “ARM Architecture Reference Manual”. The manual is available from several sources on the internet.

The FPU features are:

  • Support for single-precision and double-precision floating-point formats

  • Support for conversion between half-precision and single-precision

  • High data transfer bandwidth through 64-bit split load and store buses

  • Completion of load transfers can be performed out-of-order

  • Normalized and denormalized data are all handled in hardware

  • Trapless operation enabling fast execution

  • Support for speculative execution

The FPU fully supports single-precision and double-precision add, subtract, multiply, divide, multiply and accumulate, and square root operations. It also provides conversions between floating-point data formats and ARM integer word format, with special operations to perform the conversion in round-towards-zero mode for high-level language support.

10/100/1000 Ethernet

The PLATFORM supports two 10/100/1000 base-T Ethernet connections using two Marvell Alaska 88E1510 Ethernet PHY devices and the Xilinx Gigabit Ethernet MACs. The PHY-to-MAC interface employs a Reduced Gigabit Media Independent Interface (RGMII) connection using four data lines at 250 Mbps each for a connection speed of 1 Gbps. The PLATFORM card contains internal magnetics and can directly drive copper CAT5e or CAT6 twisted pairs.

Memory

The PLATFORM supports the following memory interfaces:

  • DDR3 SDRAM (APU)

  • QSPI flash (APU)

  • SPI flash memory I2C EEPROM

  • I2C EEPROM

DDR3-SDRAM

The ARM DDR3 controller (part of the APU) is connected to a single x16-bit wide DDR3 SDRAM memory IS43TR16640 device. The IS43TR16640 is a 128 Mx16 device providing 256 Mbyte of SDRAM.

QSPI Flash (APU)

The PLATFORM supports one Spansion S25FL256S 32-MByte, Quad-SPI (QSPI) flash device. This device is used for nonvolatile storage of the ARM boot code, user data, and program. The device connects to the APU dedicated interface. The device interface may contain a secondary boot code. The device supports the Common Flash Interface (CFI). This 4-bit data memory interface can sustain burst read operations.

SPI

Serial Peripheral Interface Bus or SPI is a synchronous serial data link standard. SPI operates in full duplex mode. SPI devices communicate in master/slave mode where the master device starts a frame and sources the clock. The PLATFORM has one SPI controller. The SPI port is attached to an FM24CL64. The FM24CL64 is a 64-kilobit nonvolatile memory employing an advanced ferroelectric process.

I2C Interface

The APU system has one I2C interface for communicating with an AT24CS02 (256 x 8) EEPROM, the PLATFORM and status LED’s.

SATA Solid-State Drive

The Xilinx APU is directly connected to an onboard Solid-State Drive (SSD). The SSD contains a single level cell NAND Flash together with a controller in a single Multi-Chip package. The Multi-Chip packaged device is soldered directly to the printed circuit board for reliable electrical and mechanical connection.

The SSD has an external write protect signal HDW_WP. The HDW_WP signal must be connected or switched to ground to enable any write to the SSD. The HDW_WP signal is pulled up on card by a 4.7 kΩ resistor to the internal 3.3 V supply.

The onboard SATA drive conforms to the follow specifications:

  • Complies with Serial ATA 2.5 Specification

  • Supports speeds: 1.5 Gbps (first-generation SATA), 3 Gbps (second-generation SATA and eSATA)

  • Supports advanced technology attachment packet interface (ATAPI) devices

  • Contains high-speed descriptor-based DMA controller

  • Supports native command queuing (NCQ) commands

Application Development Overview

The FPGA uses PetaLinux Tools. PetaLinux Tools offers everything necessary to customize, build and deploy Embedded Linux solutions on Xilinx processing systems. The solution works with the Xilinx hardware design tools to ease the development of Linux systems for Zynq®-7000 SoCs.

PetaLinux Tools provides the following:

  • Command-line interfaces

  • Application, Device Driver & Library generators and development templates

  • Bootable System image builder

  • Debug agents

  • GCC tools

  • Integrated QEMU Full System Simulator Automated tools

  • Support for Xilinx System Debugger

Linux Application Developer

As a Linux application developer, you can write code that targets the Linux OS running on the platform. PetaLinux provides a complete, reference Linux distribution that has been integrated and tested for Xilinx devices. The reference Linux distribution includes both binary and source Linux packages including:

  • Boot loader

  • CPU-optimized kernel

  • Linux applications & libraries

  • C & C++ application development

  • Debug

  • Thread and FPU support

Reference Manuals

  • Cortex-A9 Technical Reference Manual

  • Compiler manual

  • Assembler manual

  • Linker manual

  • GDB manual

Quick Start/Programmers Guide

The Quick Start Guide describes how to run an NAI sample application on an NAI ARM Linux target board and how to set up a development environment on a host PC to build a sample application using the NAI SSK Library.

Two guides are provided, one for a Linux based host and one for a Windows based host. The latest versions are provided on the NAI website.

Revision History

Motherboard Manual - 68ARM1 Revision History

Revision

Revision Date

Description

C

2024-02-21

ECO C11250, transition to docbuilder format. Pg.6 & 8, updated from 'over 40' to 'over 100'. Pg.6, updated general description. Pg.6, updated product image. Pg.6, updated block diagram. Pg.6, updated features; added Deos to OS support feature bullet. Pg.7-8, updated available module functions table. Pg.9-10, updated Introduction; added product overview section. Pg.11, added +3.3V_Aux to 'Power (Motherboard)'. Pg.11, removed 'E' from "Temperature Cycling". Pg.13-42, revised Addressing/Register Descriptions/Register Map sections. Pg.45, added Ethernet Wiring Convention. Pg.47/51, removed 'pending' from USB-DP/USB-DM. Pg.48, added +3.3V_Aux to 'Rear I/O Summary'. Pg.49-51, revised P0/P1/P2 & Ethernet pinout tables to meet VPX Standard format. Pg.50, added Ethernet option note. Pg.55, revised Front/Rear User I/O Mapping table to remove function modules. Pg.56, revised Ethernet pinout table to meet VPX Standard format. Pg.60, added Option 2 to 'ARM' option. Pg.61, added Single Channel note. Pg.61, changed DSE/DRE/DLE Power/CH maximum (VA) value from '1.5' to '2.2'.

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients’ time-to-mission with a unique approach based on a Configurable Open Systems Architecture™ (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

Application Notes

Calibration and Repairs

Call Us

(631) 567-1100

Help Bot

X