Integrator Resources

The official home for NAI Support

Not sure where to start? Try Quick Start Guide or ask a question below!

Toggle Components with Visual Button
JavaScript Form Processing

Rugged Mil-Aero SBC

INTRODUCTION

North Atlantic Industries (NAI) is a leading independent supplier of rugged COTS embedded computing products for industrial, commercial aerospace, and defense markets. Aligned with MOSA, SOSA and FACE standards, NAI’s Configurable Open System Architecture™ (COSA®) accelerates a customer’s time-to-mission by providing the most modular, agile, and rugged COTS portfolio of embedded smart modules, I/O boards, Single Board Computers (SBCs), Power Supplies and Ruggedized Systems of its kind. COSA products are pre-engineered to work together, enabling easy changes, reuses, or repurposing down the road. By utilizing FPGAs and SoCs, NAI has created smart modules that enable the rapid creation of configurable mission systems while reducing or eliminating SBC overhead.

NAI’s 67PPC2 6U OpenVPX Single Board Computer (SBC) is a powerful, multifunctional processing board designed for use in mission-critical applications that require advanced I/O capabilities. When combined with these smart modules, the board’s modular I/O approach makes it a highly flexible and integrable solution for demanding computing environments.

67PPC2 Overview

The 67PPC2 6U OpenVPX Single Board Computer (SBC) offers a variety of features designed to meet the needs of complex requirements for integrated multifunction I/O-intensive, mission-critical applications. Some of the key features include:

6U Profiles supported: This board is aligned with both VPX and OpenVPX standards, with module and slot profiles specified as

  • MOD6-PAY-2F2U2T-12.2.5-3

  • SLT6-PAY-2F2U2T-10.2.5

This compatibility ensures interoperability with other components and promote system-level integration for efficient optimized performance.

PCIe connectivity: The 67PPC2 provides highly flexible and efficient high-speed connectivity between the board and data plane with 12 x1 PCIe interfaces (routed on the VPX (P1) connector). This feature facilitates rapid data transfer and enhances overall system efficiency. With this capability, the SBC delivers exceptional throughput and responsiveness, making it an ideal choice for applications demanding extensive data processing and communication tasks.

2x 10/100/1000 Base-T and 2x 1000Base-KX Ethernet: The 67PPC2 provides optional 10/100/1000 Base-T Ethernet ports to the front and rear of the board and 1000Base-KX Ethernet ports to the rear of the board. These ports provide data communication capabilities and network connectivity for advanced control and data acquisition applications.

NXP® PowerPC™ QorIQ® T2080 Quad Core e6500 processor: The 67PPC2 is powered by a NXP® PowerPC™ QorIQ® T2080 Quad Core e6500 processor which provides several benefits to applications in rugged environments such as military, aerospace, and industrial sectors:

  • With four processing cores, the T2080 processor is well-suited for compute-intensive tasks. In the case of an SBC, this means the ability to handle complex data processing, real-time control, and mission-critical calculations efficiently.

    • There is also support for multithreading, enabling each core to handle multiple tasks simultaneously. In applications like radar signal processing, image analysis, or communication systems, this ensures optimal utilization of the CPU, enhancing overall system performance.

  • The processor is designed to offer a balance between performance and power consumption, making it suitable for applications that require low power consumption.

  • The T2080 is designed to meet the reliability and ruggedness requirements of applications such as defense and aerospace, where the SBC may be exposed to harsh conditions.

  • The T2080 includes hardware security features, which are essential for protecting sensitive military data and ensuring the integrity of mission-critical applications.

8 GB DDR3L SDRAM w/ECC memory: The SBC features an 8 GB DDR3L SDRAM, which offers users a powerful memory solution for demanding military, industrial, and aerospace environments:

  • The large memory capacity allows the 67PPC2 to handle extensive data sets, complex computations, and multitasking efficiently.

  • The DDR3L SDRAM offers a good balance between performance and power efficiency, making it suitable for a range of applications, while also providing a cost-effective solution for budget-constrained projects.

  • With ECC (Error Correcting Code), the SDRAM features real-time error detection and correction, which helps prevent data corruption and system crashes due to memory errors.

32 GB SATA II NAND Flash: The 67PPC2 utilizes a SATA II NAND Flash memory capable of providing 32 GB of storage, offering high-capacity, durable, reliable, and rugged data storage. It is well suited for applications where data must be securely stored and accessed in challenging environmental conditions while providing a cost-effective storage solution.

Discrete Input (option): The SBC features eight optional discrete input channels to the rear I/O, expanding the 67PPC’s I/O capabilities.

IPMC support (option): The 67PPC2 has IPMC (Intelligent Platform Management Controller) support, which is VITA 46.11 Tier-2 compatible. This allows for advanced system monitoring and control from the host Chassis Manager.

Support for six independent, smart function: The SBC can support up to six independent, smart function modules based on the COSA® architecture. With over 100 modules to choose from, this allows for a wide range of input and output capabilities, including analog and digital I/O, signal generation and acquisition, and communication interfaces. Each function module slot has an independent x1 SerDes interface for motherboard-to-smart module interface, to offload the host processor from I/O management.

  • The 67PPC2’s function slots #3, 5, and 6 feature a PCIe interface that enables additional Gig-E ports while function slot #4 boasts an independent external SATA II interface that supports a 480 GB memory expansion over the VPX backplane. These interfaces facilitate the expansion of external host SBC functions, which enables engineers and system architects to easily configure the board with the necessary modules and accelerate SWaP-optimized system deployment.

Peripheral I/O: The 67PPC2 features several sophisticated on-board (on motherboard) peripheral I/O interfaces, all of which are rear accessed. Designed to meet the diverse requirements of complex projects, this comprehensive I/O suite includes:

  • One USB 2.0 interface to front maintenance J7 and two USB 3.0 interfaces to the rear I/O, enabling users to transfer data quickly and reliably.

  • An optional I2C port provides a versatile serial communication interface for controlling, monitoring, and interacting with devices located at the rear of the chassis. It consists of two wires (clock and data) and allows for bidirectional communication.

  • An RS-232 console/maintenance port (front and rear) that provides a standard interface for communicating with the board for maintenance and debugging purposes. This serial port can be used for configuring the board or accessing diagnostic information and logs.

Continuous Background Built-In-Test (BIT): Continuously monitoring the board’s health and functionality during operation, this feature allows for proactive maintenance, minimizing downtime and facilitating early issue resolution for uninterrupted performance in demanding operational environments.

Software Support Kits (SSKs): SSKs are provided 'free of charge' and include base motherboard and function module API libraries and documentation. Sample and source code are also available, as well as support for real-time operating systems (RTOS) such as Wind River® VxWorks®, DDC-I™ Deos OS, or Linux BSP/OS, providing developers with flexibility and customization options for their specific application needs.

VICTORY Interface Services: NAI offers VICTORY Interface Services as an option, providing an open industry-standard approach for integrating different components in a system.

25 W MB power dissipation: With an estimated typical power dissipation of 25 W (not including module power), the 67PPC2 ensures suitability for energy-sensitive applications. It minimizes heat generation, contributing to the SBC’s long-term reliability in rugged environments, in addition to making it compatible with legacy systems operating under specific power constraints.

Operating temperature and compliance: The 67PPC2 is designed to meet system levels MIL-STD-461 (EMI) and MIL-STD-810 (vibration/shock).

Operating temperature:

The SBC has a wide operating temperature range, with models operating from:

  • 0° C to 70° C (commercial model)

  • -40° C to +85° C (rugged model)

SOFTWARE SUPPORT

The ENAIBL Software Support Kit (SSK) is supplied with all system platform based board level products. This platform’s SSK contents include html format help documentation which defines board specific library functions and their respective parameter requirements. A board specific library and its source code is provided (module level ‘C’ and header files) to facilitate function implementation independent of user operating system (O/S). Portability files are provided to identify Board Support Package (BSP) dependent functions and help port code to other common system BSPs. With the use of the provided help documentation, these libraries are easily ported to any 32-bit O/S such as RTOS or Linux.

The latest version of a board specific SSK can be downloaded from our website www.naii.com in the software downloads section. A Quick-Start Software Manual is also available for download where the SSK contents are detailed, Quick-Start Instructions provided and GUI applications are described therein. For other operating system support, contact factory.

SPECIFICATIONS

General for the Motherboard

Signal Logic Level:

Supports LVDS PCIe ver. 2.0 bus (x1)

Power (Motherboard):

+5 VDC @ 6.3 A (typical)

±12 V @ 0 mA (certain modules may require +/-12 V for operation)

+3.3V_AUX @ <100 mA (typical)

Then add power for each individual module

Temperature, Operating:

"C" =0° C to +70° C, "H" =-40° C to +85° C (see part number)

Storage Temperature:

-55° C to +105° C

Temperature Cycling:

Each board is cycled from -40° C to +85° C for option “H”

General size

     Height:

9.2" / 233.7 mm (6U)

     Width:

0.8” / 20.3 mm (4HP) or 1.0" / 25.4 mm (5 HP) air cooled front panel options

     Depth:

6.3“ / 160 mm deep

Weight:

12.5 oz. (354 g) unpopulated (approx.) (convection or conduction cooled)

>> then add weight for each module (typically 1.5 oz. (42 g) each)

Specifications are subject to change without notice.

Environmental

Unless otherwise specified, the following table outlines the general Environmental Specifications design guidelines for board level products of North Atlantic Industries. All our cPCI, VME and OpenVPX boards are designed for either air or conduction cooling. All boards also incorporate appropriate stiffening to ensure performance during shock and vibration but also to assure reliable operation (lower fatigue stresses) over the service life of the product.

Parameters

Level

1 / Commercial-AC (Air Cooled)

2 / Rugged-AC (Air Cooled)

3 / Rugged-CC (Conduction Cooled)

Temperature - Operating

0° C to 70° C, AmbientH

-40° C to 85° C, AmbientI

-40° C to 85° C, at wedge lock thermal interface

Temperature - Storage

-40° C to 85° C

-55° C to 105° C

-55° C to 105° C

Humidity - Operating

0 to 95%, non-condensing

0 to 95%, non-condensing

0 to 95%, non-condensing

Humidity - Storage

0 to 95%, non-condensing

0 to 95%, non-condensing

0 to 95%, non-condensing

Vibration - SineA

2 g peak, 15 Hz - 2 kHzB

6 g peak, 15 Hz - 2 kHzB

10 g peak, 15 Hz - 2 kHzC

Vibration - RandomD

.002 g2 /Hz, 15 Hz - 2 kHz

0.04 g2 /Hz, 15 Hz - 2 kHz

0.1 g2 /Hz, 15 Hz - 2 kHzE

ShockF

20 g peak, half-sine, 11 ms

30 g peak, half-sine 11 ms

40 g peak, half-sine, 11 ms

Low PressureG

Up to 15,000 ft.

Up to 50,000 ft.

Up to 50,000 ft.

Notes:

  1. Based on sweep duration of ten minutes per axis on each of the three mutually perpendicular axes.

  2. Displacement limited to 0.10 D.A. from 15 to 44 Hz.

  3. Displacement limited to 0.436 D.A. from 15 to 21 Hz.

  4. 60 minutes per axis on each of the three mutually perpendicular axes.

  5. Per MIL-STD-810G, Method 5.14.6 Procedure I, Fig.514.6C-6 Category 7 tailored (11.65 Grms): 15 Hz - 2 kHz; ASD (PSD) at 0.04 g2/Hz between 15 Hz - 150 Hz, increasing @ 4 dB/octave from 0.04 g2/Hz to 0.1 g /Hz between 150 Hz - 300 Hz, 0.1 g2/Hz between 300 Hz - 1000 Hz, decreasing @ 6 dB/octave from 0.1 g2/Hz to 0.025 g2/Hz between 1000 Hz - 2000 Hz. Three hits per direction per axis (total of 18 hits).

  6. Three hits per direction per axis (total of 18 hits).

  7. For altitudes higher than 50,000 ft., contact NAI.

  8. High temperature operation requires 350 lfm minimum air flow across cover/heatsink (module dependent).

  9. High temperature operation requires 600 lfm minimum air flow across cover/heatsink (module dependent).

Specifications subject to change without notice

67PPC2 OVERVIEW

The 67PPC2 is a 6U OpenVPX, low-power and high performance Single Board Computer (SBC). The 67PPC2 offers on-board I/O expansion through six (6) Generation-5 (GEN5) NAI smart I/O function modules. Powered by the NXP T2080 @ 1.8 GHz Power Architecture® processor, the 67PPC2 provides a balanced performance vs. power dissipation SBC solution, for today’s demanding, space constrained and resource limited embedded systems.

The 67PPC2 SBC, supplemented with a full complement of software I/O libraries and drivers, is ideally suited for integration within a multitude of commercial and rugged, military embedded processing and I/O systems. The 67PPC2 SBC provides a PCIe bus root-complex and/or Gigabit Ethernet (GbE) capability and may be utilized with other NAI high-density multifunction I/O boards to provide a complete, expandable, low power, high performance and programmable solution for sensor and communication data acquisition, management, processing and distribution. All I/O sensor data is available on the PCIe bus or GbE.

The 67PPC2 card provides high-density front or rear I/O for systems requiring closed chassis operation (i.e. embedded, conduction cooled applications) and simple card replacement. Using rear I/O minimizes the effort required to remove cards from a chassis improving maintainability and reliability.

The 67PPC2 card uses OpenVPX P0, P1, and P2 - P6 rear connectors. Rear I/O connectivity, via the P2 and P1 connectors, includes Ethernet, asynchronous serial, I2C, programmable TTL, USB and access to the on-board add-on Module I/O. Front I/O is limited to Expansion Module I/O.NXP QorIQ® T2080 Quad Core e6500 Processor.

The 67PPC2 utilizes the T2080 Quad Core e6500 processor with the following capabilities. Note: all processor capabilities may not be user accessible features at the end item level.

  • Four e6500 cores sharing a 2MB L2 cache

  • 8GB of DDR3L SDRAM (plus ECC)

  • 2 Ethernet interfaces, supporting combinations of:

    • Up to two 1 Gbps KX Ethernet MACs

    • Up to two 1 Gbps TX Ethernet MACs

  • Three PCIe interfaces

    • 12x1 PCIe ports for VPX communication

    • 1x1 PCIe to Module interface 3

    • 1x1 PCIe to switch to support Module interfaces 5 and 6 & the Zynq to R/W to module registers

  • Two SATA 2.0 controllers

    • 32GB onboard ROM

    • SATA switch for external storage or storage through Module Slot 4 (factory configured).

  • Two high-speed USB 3.0 ports (Contact Factory)

  • I2C port to the VPX backplane

  • RS232 Serial debug port

  • On-board TTL Digital I/O

  • 8 Discrete Input channels (0-60V)

  • 256 MB NOR Flash

  • 8 Kb FRAM

I/O Modules

Six I/O module slots enable integrators to mix-n-match a variety I/O and communication functions. The 67PPC2 uses a GEN5 high-speed SerDes Modbus. Some of the new modules are currently under development. Please consult the factory for updates on the availability of certain functions. Module I/O signals are available as both front and rear I/O.

Software

Built-In Test

The 67PPC2 supports options for Power-On-Self-Test (POST) testing (memory, peripherals, etc.). The 67PPC2 also supports function modules with NAI’s flexible, leading-edge, fully programmable and continuous background built-in-test (BIT) enabled function. BIT tests both 67PPC2 on board functions and functions contained on expansion modules, making it a useful field service tool.

U-Boot Firmware (Boot Utility/Linux®)

The U-boot firmware provides a foundation layer to interface between the raw board hardware. U-boot has programmable device set-up, setup flexibility, and supports booting supported Operating Systems with a straight-forward user interface. U-boot also allows booting from a number of different devices (check part numbering options).

Boot ROM (VxWorks®)

VxWorks utilizes the WindRiver VxWorks Boot ROM. When specified/configured with VxWorks as an OS, a VxWorks Boot ROM image (with utilities) is pre-flashed at the factory supporting VxWorks development and FLASH download (check part numbering options).

Operating System Support

Wind River VxWorks 6.9, DDC-I Deos, Linux

Contact NAI for availability of other operating systems.

Mechanicals

Heat Sink

CAUTION: The 67PPC2 contains an integrated heat sink and cover. Do not remove the heat sink. There are no user serviceable components, switches or programming jumpers under the heat sink. In the unlikely event the 67PPC2 becomes is inoperable, please return the unit to the factory for service.

67PPC2 Connector Interfaces

The 67PPC2 Conduction cooled version has eight I/O connectors P0, P1, P2 thru P6 and J7. Connectors P1, and P2 thru P6 at the rear of the module, are used for the OpenVPX interface and for user I/O. Connector J7 is utilized for GbE Ethernet interface option & RS-232 Serial debug/console access. J7 uses a Mini-HDMI connector for USB port1, asynchronous serial (debug port) and optionally Ethernet port 1. A J7 connector adapter cable/breakout board P/N 75SBC4-BB optional accessory kit is available for quick connect (contact factory).

67PPC2 Img05

Figure 1. 67PPC2 Connectors

The 67PPC2 may also be provided in an air-cooled version with front panel I/O accessibility. Please refer to part numbering options and contact factory for available mechanical options.

67PPC2 ENVIRONMENTAL/POWER SPECIFICATIONS

Conduction-Cooled/Rugged

Operating temperature

-40 to 85° C (measured at card edge/rail)

Storage temperature

-55 to 105° C

Relative humidity

5 to 95% non-condensing

MTBF

TBD

(see NAI card-level Environmental Specifications for other ruggedization & application environment levels)

Power Requirements

Power

Tolerance

Current requirement

5 V

±10%

6.3 A typical

+12 V-AUX

±10%

*

-12 V-AUX

±10%

*

3.3 V-AUX

±10%

100 mA typical

RTC_STDBY

1.5 V to 5 V ±10%

5 µA @ 3 V Typical

*The 67PPC2 without modules does not derive any power from the +12V and -12V backplane rail supplies. When calculating total power supply consumption, remember to add the +12, -12, and 5V power consumption for two optional modules.

67PPC2 OUTLINE DIMENSIONS

The 67PPC2 is compatible with the OpenVPX ANSI Vita 46 Specification. Conduction cooled 67PPC2 cards comply with ANSI/VITA 30.1-2002. The following diagram is for reference only. All dimensions are in inches.

67PPC2 Img06

Figure 2. 67PPC2 Dimensions (conduction cooled)

67PPC2 ON BOARD RESOURCES

Memory

DDR3L SDRAM

The 67PPC2 provides a total of 8 GB of ECC DDR3L memory. This memory is organized as 8 1Gb x 8 MT41K1G8 devices (parts may vary), with a ninth device providing storage for ECC data. The T2080 has an on chip 64-bit DDR3 memory controller. The controller has full ECC error-correction support, with the ability to detect multi-bit errors and correct single-bit errors within a nibble. Please consult the Micron data sheet for DDR3 device specific details.

NOR Flash

Connected through the local bus, the 67PPC2 supports 256 Mbytes of flash. The Flash consists of a single soldered in Micron® Flash device MT28FW02GBBA1HPC device. Flash is configured as a 16-bit wide device, using the 16-bit asynchronous data access interface. The 256 MB flash is divided into two logical banks, one standard bank and one for recovery. The FPGA Local Bus controls which bank is accessible by setting the top bits of the address seen by the flash. The NOR Flash has an erase capacity of 100,000 cycles per sector and typical data retention of 20 years.

Banks

  1. The first bank (bank 0) is reserved for a recovery boot-loader. If the second bank is not accessible the first bank stores a full image for recovery of the system.

  2. The second bank (bank 1) is reserved for the boot-loader. In the default configuration, the SBC will boot from this area. The customer can modify the boot-loader if they want to and flash it in this area.

FRAM

The FM24CL64B is a 64-kilobit nonvolatile memory employing an advanced ferroelectric process. The ferroelectric random-access memory or FRAM is nonvolatile and performs reads and writes like a RAM. It provides reliable data retention for 38 years. The 67PPC2 FRAM 64K bits are organized as 8,192 x 8 bits random access memory, connected to the T2080 CPU through the SPI controller, SPI_CS [0].

SATA

The T2080 CPU has two available on-chip SATA 2 type controllers. SATA port 1 is supported with SerDes12, and SATA port 2 is supported with SerDes13. The 67PPC2 SATA port 2 is connected to an on board SATA 2 Solid State Drive. SATA2 is connected to Module Slot 4 (supports direct SATA 2 solid-state FLASH module, if fitted) or to an external storage device via a programmable switch.

SATA Port 1

The SATA port 1 controller interface on the T2080 CPU is directly connected to an on-board, solid-state drive. The SSD contains a single level cell NAND Flash together with a controller in a single multi-chip package. This multi-chip packaged device is soldered directly to the printed circuit board, for reliable electrical and mechanical connection.

The onboard SATA drive conforms to the follow specifications:

  • Complies with Serial ATA 2.5 Specification

  • Supports speeds: 1.5 Gbps (first-generation SATA), 3 Gbps (second-generation SATA and eSATA)

  • Supports advanced technology attachment packet interface (ATAPI) devices

  • Contains high-speed descriptor-based DMA controller

  • Supports native command queuing (NCQ) commands

The standard ordering code for the 67PPC2 includes a 32GB SSD drive. Larger devices are available; please consult the factory for availability.

SATA Port 2

The SATA port 2 interface on the T2080 CPU is connected directly to a high-speed connector for Module Slot 4 or to an external storage device via a programmable switch. An optional SATA Flash drive is available for the 67PPC2; please consult the Factory for availability.

Peripheral I/O

Ethernet

The T2080 supports two 10/100/1000Base-TX or two 1000Base-KX Ethernet ports.

The 67PPC2 Ethernet ports support:

  • Detection and correction of pair swaps (MDI crossover), and pair polarity

  • MAC-side and line-side loopback

  • Auto-negotiation

Ethernet port 1 can be routed as 10/100/1000Base-TX to the front, 10/100/1000Base-TX to the rear, or KX-Ethernet to the rear as build options.

Ethernet Port 2 can be routed as 10/100/1000Base-Tx to the rear or KX-Ethernet to the rear as build options.

I/O pin outs can be found in the Pinout Details section of this document.

USB

The 67PPC2 supports two USB 3.0 ports. Contact factory for availability.

USB port 0 is available at the front of 67PPC2, on connector J7. The USB port can operate as a standalone host.

  • Compatible with USB specification, Rev. 2.0

  • Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations

  • Supports operation as a standalone USB host controller

  • Supports USB root hub with one downstream-facing port

  • Enhanced host controller interface (EHCI)-compatible

  • One controller supports operation as a standalone USB device

  • Supports one upstream-facing port

  • Supports six programmable USB endpoints

I2C

I2C is a two-wire, bidirectional single ended serial bus that provides efficient method of exchanging data between a master and slave device. The T2080 CPU contains three identical I2C controllers. The 67PPC2, I2C port 1 of the T2080 is connected to the die temperature monitor. I2C port 2 is connected to the real-time clock, and I2C port 3 is connected to the OpenVPX connector P2, and is available as rear I/O.

T2080 CPU I2C port

Assignment

I2C addresses

Device

Port 1

Onboard Devices

0x08 & 0x70

Power Supply

0x4C

Temperature

0x50 & 0x51

EEPROM

0x57 & 6F

RTC

0x68

PCIe Switch

Port 2

Rear I/O

User Configurable

Port 3

IPMI (contact factory)

Not Applicable

Real-Time Clock

Real-Time Clock/Calendar (RTCC) is used to provide a system time and date function or can be used as an event timer. In addition, the MCP79410 includes:

  • 64 Bytes SRAM, Battery Backed

  • 1 Kbits EEPROM (128x8)

  • Power-Fail Time-Stamp for Battery Switchover

To maintain the RTCC and SRAM functions when the 5 V power is off, the RTC_STDBY pin must be connected to an external battery or power supply. The RTC_STDBY supply voltage should be between 1.4 V to 5.0 V. A typical RTC_STDBY supply requirement is 3.0 V @ 5 µA.

CAUTION: 5.5 V is the maximum allowable RTC_STDBY input voltage. Any voltage larger than 5.5 V on the RTC_STDBY pin will damage the RTCC.

Temperature Sensor

The T2080 processor has two pins that are connected to a thermal body diode on the processors die. This diode allows for direct die temperature measurements. The ADT7461 I2C device is used to measure the change in forward bias voltage (VBE) of the body diode. The ADT7461and thermal body diode together allow for direct reading of the die temperature, to an accuracy of ±1°C.

Device:

On Semi, ADT7461ARMZ

I2C address:

0x4C

SPI

Serial Peripheral Interface Bus or SPI is a synchronous serial data link standard. SPI operates in full duplex mode. SPI devices communicate in master/slave mode where the master device starts a frame and sources the clock. The T2080 CPU has one SPI controller with four device select pins (SPI_CS [3:0]). SPI_CS [0] is attached to an FRAM. SPI_C [1,2,3] are unconnected.

Linux device drivers are available to access FRAM features.

T2080 CPU SPI CS

Assignment

Device

SPI_CS0

FRAM

FM25CL64

SPI_CS1

Not used

SPI_CS2

Not used

SPI_CS3

Not used

Serial Ports

The 67PPC2 has one serial port to the front and to the rear of the card. Do not plug into the serial port from both the front and rear of the card at the same time. This will cause errors when communicating to the card through the serial port.

For U-boot, the console port is selected at compile time. The 67PPC2 is configured to use the first serial port (SER1), which is routed to the OpenVPX P1 connector at rear of the card.

For Linux, the console port is passed as a kernel parameter by U-boot when it loads Linux and so can be selected at run-time.

Inboard Discrete/TTL Options

Inboard Discrete Input & TTL I/O are available as a configuration options (see pin-outs/P/N configuration).

Discrete Input/TTL I/O Specifications

Note
The Discrete Input / TTL I/O signals are non-isolated. All grounds are common and are connected to a single Digital Ground and power return.

Discrete Input

Input levels: 0-60V

TTL Input

Input levels: TTL and CMOS compatible, single ended inputs

Input levels:

Vin L (min): 0 V

Vin L (max): 0.8 V

Vin H (min): 2.0 V

Vin H (max): 5.0 V

TTL Output

Output levels: TTL/CMOS, single ended outputs

Drive Capability:

Vout L (min): 0 V min @ 24 mA (sink)

Vout L (max): 0.55 V max @ 24 mA (sink)

Vout H (min): 2.4 V @ 24 mA (source)

Vout H (max): 3.3 V VCC, (unloaded)

Rise/Fall time: 10 ns into a 50pf load

REGISTER DESCRIPTIONS

The register descriptions provide the Register Name, Function Address Offset, Type, Data Range, Read or Write information, Initialized Value, a description of the function and, in most cases, a data table. Refer also to the FPGA Local Bus Register Map.

FPGA Local Bus Register Map

Base address of FPGA Local Bus = 0xEA00 0000

Register address = Base 0xEA00 0000 + Register Offset

Name

R/W

Default

0x00

SPARE

N/A

0x12

SPARE

N/A

0x02

SATA_MUX_SEL

R/W

1

0x04

BANK_SEL

R/W

0

0x06

FW_REV

R

REVISION

0x08

TTL_DIR

R/W

0x"00"

0x0A

TTL_LPBK

R

0x"00"

0x0C

TTL_DATA

R

0x"XX"

R/W

0x"00"

0x0E

EN_PROC_RST

W

0

0x14

TTL_IRQ_EN

W

0x"00"

0x16

TTL_IRQ_POL

W

0x"00"

0x18

TTL_IRQ_STAT

R/W

0x"00"

0x1A

TEMP_ALARM_OVD

W

0

0x1C

PWR_DWN_CMD

W

0x"0000"

0x1E

TEMP_INT_STAT

R/W

0

0x20

TEMP_INT_EN

W

0

0x22

WDT_ENABLE

R/W

0

0x24

WDT_TIME_SET

R/W

0

0x26

WDT_RESET

W

0

67PPC2 VxWorks Address Map

OFFSET (Byte)

Name

Size

Function/Notes

0x0000 0000

DDR3

2 GB

DDR3 SDRAM

0x7F40 0000

Reserved

8 MB

8 MB reserved memory for QMAN hardware

0x7FC0 0000

Reserved

4 MB

4 MB reserved memory for BMAN hardware

0x8000 0000

PCIe 1 prefetchable memory

64 MB

PCIe 1 prefetchable memory

*0x8400 0000

PCIe non-prefetchable memory

64 MB

PCIe non-prefetchable memory

0x8800 0000

PCIe 1 IO

64 MB

PCIe 1 I/O

0x8C00 0000

PCIe 1 IO 32

64 MB

PCIe 1 I/O 32

*0x9000 0000

PCIe 2 non-prefetchable memory

512 MB

PCIe 2 non-prefetchable memory

0xB000 0000

PCIe 3 prefetchable memory

64 MB

PCIe 3 prefetchable memory

*0xB400 0000

PCIe 3 non-prefetchable memory

128 MB

PCIe 3 non-prefetchable memory

0xBC00 0000

PCIe 3 I/O

32 MB

PCIe 3 I/O

*0xBE00 0000

PCIe 3 I/O 32

32 MB

PCIe 3 I/O 32

0xC000 0000

PCIe 4 prefetchable memory

64 MB

PCIe 4 prefetchable memory

*0xC400 0000

PCIe non-prefetchable memory

64 MB

PCIe non-prefetchable memory

0xC800 0000

PCIe 4 I/O

64 MB

PCIe 4 I/O

0xCC00 0000

PCIe 4 I/O 32

64 MB

PCIe 4 I/O 32

0xE000 0000

BMAN

32 MB

0xE200 0000

QMAN

32 MB

0xE400 0000

DCSR

4 MB

0xEA00 0000

FPGA Registers

4 KB

0xEE00 0000

CCSBAR

16 MB

0xF800 0000

NOR FLASH

128 MB

Note
*Unassigned n/u

67PPC2 U-Boot/Physical Address Map

OFFSET (Byte)

Name

Size

Function/Notes

0x0000'0000

DDR3

2GB

Main T2080 CPU Memory

0xE800 0000

NOR FLASH

128 MB

128 MB of NOR FLASH per bank

0xFFDF 0000

FPGA Registers

4 KB

FPGA Registers

*0x8000 0000

PCIE 1 Mem

512 MB

0xF800 0000

PCIe 1 I/O

64 KB

*0xA000 0000

PCIe 2 Mem

256 MB

0xF801 0000

PCIe 2 I/O

64 KB

*0xB000 0000

PCIe 3 Mem

256 MB

0xF802 0000

PCIe 3 I/O

64 KB

*0xC000 0000

PCIe 4 Mem

256 MB

0xF803 0000

PCIe 4 I/O

64 KB

*0xF400 0000

BMAN

32 MB

0xF600 0000

QMAN

32 MB

*0xF000 0000

DCSR

4 MB

0xFE00 0000

CCSRBAR

16 MB

Note
*Unassigned n/u

Hardware Interrupts

The 67PPC2 uses eight external hardware interrupts. IRQ06, IRQ07, IRQ08, and IRQ09 are not available (n/a), these pins are used to support the USB ports. The T2080 hardware interrupts are assigned as indicated below.

T2080 CPU Hardware Interrupt

Assignment

Source

IRQ0

RTC (real time clock)

MCP79410 (MFP)

IRQ1

Temperature warning

ADT7461 (Alert#)

IRQ2

ALT-INT1

FPGA (function TBD)

IRQ03/GPIO21/DMA2_DREQ0

Ethernet PHY 1

BCM5482S (LED_P1_2_INTR#)

IRQ04/GPIO22/DMA2_DACK0

Ethernet PHY 2

BCM5482S (LED_P2_2_INTR#)

IRQ05/GPIO23/DMA2_DDONE0

ALT-INT2

PCI INTB

IRQ06/GPIO24/USB1_DRVVBUS

PCI INTC

IRQ07/GPIO25/USB1_PWRFAULT

PCI INTA

IRQ08/GPIO26/USB2_DRVVBUS

n/a

IRQ09/GPIO27/USB2_PWRFAULT

n/a

IRQ10/GPIO28/EVT7

Over Temp & TTL I/O

CLPD (temp-alarm) & TTL I/O

IRQ11/GPIO29/EVT8

ALT-INT3

FPGA (function TBD)

TTL Registers

Attached to the T2080 CPU via local bus is a portion of the FPGA. This logic provides miscellaneous “glue” functions and 8 programmable TTL I/O channels (TTL_CH [8:1]). (These TTL channels may be programmed as inputs or outputs as needed. Channels that are programmed as inputs may generate interrupts. Interrupts on input pins can be programmed to occur on (high to low) or (low to high) input pin transitions. TTL interrupts occur on the IRQ10 input of the T2080 CPU.

The 67PPC2 utilizes level shifting single ended bus transceivers, allowing the I/O pins to be 5 V tolerant. Each I/O pin is individually pulled up on card by a 4.7 KΩ resistor to the internal 3.3 V supply rail. External pull ups are not required for open collector operation. The TTL_CH [8:1] signals are pinned out as rear I/O on connector P2. As a factory option, the eight TTL_CH pins may be disconnected and their associated P2 pins used to support additional module I/O signals.

TTL Direction

Function: TTL direction. Sets channels as inputs or outputs. Bitmapped per TTL channel.

Function Address Offset(s): 0x08

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x00

Operational Settings: Write 0 for input; 1 for output: Default is configured for Input. Data bits [7:0] correspond to one of eight channels TTL_CH [8:1] respectively.

Table 1. TTL I/O Select

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

X

Ch.8

Ch.7

Ch.6

Ch.5

Ch.4

Ch.3

Ch.2

Ch.1

Channel

0

D

D

D

D

D

D

D

D

D=DATA BIT

TTL Data

Function: Reads the TTL state of a specific channel’s I/O pin. When configured as an output, write to this register to set the channel to drive high or low. Bitmapped per TTL channel.

Function Address Offset(s): 0x0C

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x00

Operational Settings: When TTL_DIR register has channel configured as an input (0), read corresponding bit for the state of the TTL input. When TTL_DIR has channel configured as an output (1), write 0 for Low output/write 1 for High output: Data bits [7:0] correspond to one of eight channels TTL_CH [8:1] respectively.

Note
Reading this register returns the output to the I/O pin of a specific channel and does not return the value set to the register. Because of this, if there is impedance to the pin it may not return the proper setting. For example, if the channel is set to drive high and some impedance causes it to drive low, then this register will read low (0). To guarantee the correct setting is read, please refer to the TTL Loopback register.
Table 2. TTL Data

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

X

Ch.8

Ch.7

Ch.6

Ch.5

Ch.4

Ch.3

Ch.2

Ch.1

Channel

0

D

D

D

D

D

D

D

D

D=DATA BIT

TTL Loopback

Function: Reads back TTL output channel(s) register contents. Bitmapped per TTL channel.

Function Address Offset(s): 0x0A

Type: binary word (16-bit)

Read/Write: R

Initialized Value: 0x00

Operational Settings: Reads the state of output register for each channel, regardless of the state of the I/O channel. Note

This provides the last commanded/written output value, which may differ from the TTL Data 'read' status (if there is a problem, can be used for BIT status).

Table 3. TTL Loop Back

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

X

Ch.8

Ch.7

Ch.6

Ch.5

Ch.4

Ch.3

Ch.2

Ch.1

Channel

0

D

D

D

D

D

D

D

D

D=DATA BIT

TTL IRQ Enable

Function: To configure a channel as in interrupt, its corresponding TTL_DIR register must be set for inputs (0). Setting the channel’s bit in this register selects the channel to be enabled for as an interrupt. Bitmapped per TTL channel. Function Address Offset(s): 0x14

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x00

Operational Settings: Write 1 to enable interrupts for selected channel. Write 0 for interrupts not enabled, is default.

Table 4. TTL Enable Interrupts

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

X

Ch.8

Ch.7

Ch.6

Ch.5

Ch.4

Ch.3

Ch.2

Ch.1

Channel

0

D

D

D

D

D

D

D

D

D=DATA BIT

TTL IRQ Polarity

Function: When a channel TTL IRQ Enable register bit is enabled, this register determines whether the interrupt will be generated for either a “rising edge” or “falling edge” event detection. Bitmapped per TTL channel.

Function Address Offset(s): 0x16

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x00

Operational Settings: Write a 1 to sense on a rising edge and a 0 to sense on a falling edge

Table 5. TTL Set Edge/Level Interrupt

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

X

Ch.8

Ch.7

Ch.6

Ch.5

Ch.4

Ch.3

Ch.2

Ch.1

Channel

0

D

D

D

D

D

D

D

D

D=DATA BIT

TTL IRQ Status

Function: When an interrupt for a channel or channels occurs, the corresponding bit for that channel will be set High in this register. Bitmapped.

Function Address Offset(s): 0x18

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x00

Operational Settings: When a TTL input channel generates an interrupt, the corresponding bit in the TTL_IRQ_STAT is set High (1). Once a bit is set by a transition on the input pin, the bit remains set until cleared by a register write. Writing a (1) to the corresponding bit resets the interrupt status to (0).

Table 6. TTL Interrupt Status

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

X

Ch.8

Ch.7

Ch.6

Ch.5

Ch.4

Ch.3

Ch.2

Ch.1

Channel

0

D

D

D

D

D

D

D

D

D=DATA BIT

Discrete Registers

On the 67PPC2, there is an option for 8 General Purpose Input signals. These signals are designed to sense grounded and open/floating inputs. They use the same channels as the TTL I/O signals, and the registers must be configured the same way as the input TTLs. The Discrete option shares the same register descriptions as the TTL input, with the addition of the Discrete Data register.

The typical input circuit is in the figure below.

Each input has a 5 K resistor in series with it, to provide input protection.

Inputs can tolerate voltages from -48 v to + 48 v.

Output logic is the inversion of the input state. An Input voltage below 3.0 volts is a valid Low input and produces a valid High output state. An Input voltage above 3.5 volts is a valid High input and produces a valid Low output state.

Each input is pulled up to 5 volts through a 14 K resistor (5 K + 9 K), with a Diode in series.

If the input is open or loaded with impedance greater than 100 K to GND, it will produce a logic Low output state.

If the input is shorted to GND or loaded with impedance to GND less than 100 Ohms, it will produce a logic High output state. In addition, each input has a bi-directional 48 v transient voltage suppressor to GND.

67PPC2 Img07

Discrete Data

Function: Reads the discrete input of all channel’s I/O pin.

Function Address Offset(s): 0x0C

Type: binary word (16-bit)

Read/Write: R

Initialized Value: 0x00

Operational Settings: Each GPI backplane input pin is connected to two input circuits.

Redundant input states (In xR) can also be read.

Table 7. Discrete Inputs

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

In 8R

In 7R

In 6R

In 5R

In 4R

In 3R

In 2R

In 1R

In 8

In 7

In 6

In 5

In 4

In 3

In 2

In 1

D=DATA BIT

Temperature Sensing

Temperature Alarm Override Select

Function: Overrides temperature alarm auto shutdown.

Function Address Offset(s): 0x1A

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x0000

Operational Settings: Write a 1 to override the temperature alarm automatic shutdown. Default value = 0.

Table 8. Temperature Alarm Override Select D: [1 = Temperature Alarm Shutdown Disabled; 0 = Temperature Alarm Shutdown Enabled]

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

0

0

0

0

0

0

0

0

D

D=DATA BIT

Temperature Alarm Interrupt Status

Function: Clears latched temperature alarm status.

Function Address Offset(s): 0x1E

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x0000

Operational Settings: Write a 1 to clear the interrupt status. Default value = 0.

Table 9. Temperature Alarm Override Select D: [1 = Clear Interrupts; 0 = Default]

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

0

0

0

0

0

0

0

0

D

D=DATA BIT

Temperature Alarm Interrupt Enable

Function: Enables temperature alarm interrupt.

Function Address Offset(s): 0x20

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x0000

Operational Settings: Write a 1 to enable the temperature alarm interrupt. Default value = 0.

Table 10. Temperature Alarm Override Select D: [1 = Enable Interrupts; 0 = Default]

D15-D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

0

0

0

0

0

0

0

0

D

D=DATA BIT

Power Shutdown

Power Down Command

Function: Shuts down power to the board.

Function Address Offset(s): 0x1C

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0x000

Operational Settings: Write the proper sequence of words “0xDEAD” followed by "0xC0DE" to initiate a power shutdown.

Table 11. Power Down Command

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D=DATA BIT

Bank Select

Function: Selects the Bank to boot from.

Function Address Offset(s): 0x04

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0

Operational Settings: By default, the motherboard will boot from the second bank (bank 1). If you cannot boot the board remove the NOR jumper to force the board to boot from the first bank (bank 0). Bank 0 contains a recovery image for the board. Please view this flowchart to see how the setting of this register affects how your board boots.

poweron
Table 12. Bank Select

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D=DATA BIT

Processor Restart Enable

Function: Selects whether the Processor can restart the board.

Function Address Offset(s): 0x0E

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write a 1 to this register to enable processor restarts. If the Reset jumper is installed a reset cannot occur. Please view this flowchart to see how the setting of this register affects the operation of the board.

restart enable
Table 13. Processor Restart Enable

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D=DATA BIT

SATA Location Select

Function: Selects whether to use external SATA storage through the backplane or module two SATA storage.

Function Address Offset(s): 0x02

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write a 0 to this register to use module two SATA storage. Write a 1 to use external SATA storage through the backplane.

Table 14. SATA Location Select

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D=DATA BIT

Watchdog

Watchdog Enable

Function: Enables the hardware Watchdog Timer.

Function Address Offset(s): 0x22

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write a 0 to this register to disable the Watchdog Timer. Write a 1 to enable the Watchdog Timer

Table 15. Watchdog Enable

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D=DATA BIT

Watchdog Time Set

Function: Set the duration of the hardware Watchdog Time in “counts”. (524uS per count)

Function Address Offset(s): 0x24

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write a 0 to this register to disable the Watchdog Timer. Write a 1 to enable the Watchdog Timer

Table 16. Watchdog Enable

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D=DATA BIT

Watchdog Reset

Function: Resets the hardware Watchdog elapsed time.

Function Address Offset(s): 0x26

Type: binary word (16-bit)

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write a 1 to this register to reset the Watchdog elapsed time. This will “pet” the watchdog.

Table 17. Watchdog Enable

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

FUNCTION

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D=DATA BIT

67PPC2 SOFTWARE LIBRARIES/ASSOCIATED DOCUMENTS

67PPC2 BSP processor Module Library

The 67PPC2 Processor library package provides function interfaces to the on-module functionality as well as the OpenVPX interface. This package contains Help documentation (in html format) that explains all the functions available in the library. The package also contains the source code (*.h, *.c) files as well as the files needed to build the library using Wind River Linux or other supported operating systems similar. Example programs are also provided to demonstrate the usage of the libraries in typical applications of the module.

Associated Documents

NAI Documents

*Programmer’s Reference Guide for NAI 67PPC2 Single Board Computer (TBD)

*67PPC2 Ethernet Download (TBD)

*67PPC2 USB Download (TBD)

*Standalone documents “pending/TBD”; currently, all reference documentation required are embedded within the specific OS 67PPC2 BSP/Support documentation (i.e. BSPx.x.x \ layers \ nai_bsp \ templates \ board \ nai67PPC2 \ (README) files (where x.x.x is the BSP version/revision available).

Processor

T2080 QorIQ Integrated Processor Hardware Specifications

T2080 QorIQ Integrated Multicore Communication Processor Family Reference Manual e500mc Core Reference Manual

REGISTER MEMORY MAP ADDRESSING

The register map address consists of the following:

  • cPCI/PCIe BAR or Base Address for the Board

  • Module Slot Base Address

  • Function Offset Address

Board Base Address

The table below lists the BAR used for access to the motherboard and module registers. The second BAR is used internally for motherboard and module firmware updates. The other cPCI/PCIe BARs not listed are not used.

NAI Boards

Device ID

Bus

Motherboard and Module Register Access

Motherboard and Module Firmware Updates

Controller/Master Boards

67PPC2

0x6784

PCIe

BAR 1

Size: Module Dependent (minimum 64K Bytes)

BAR 2

Size: 1M Bytes

Module Slot and Function Addresses

The memory map for the modules are dependent on the types of modules on the board and the order in which the modules are installed on the board as well as the firmware installed on the motherboard. The function modules are enumerated allowing for dynamic memory space allocation and therefore the “start” address of the module function register area is factory pre-defined (and read from) the Module Address register. Refer to Figure 1 for an example.

67PPC2 6modules addressing

Figure 1. Register Memory Map Addressing for Motherboards with 6 Modules

Address Calculation

Motherboard Registers

Read/Write access to the motherboard registers starts with the base address for the board and then the motherboard base offset address.

For example, to address Module Slot 1 Start Address register (i.e. register address = 0x0400):

  1. Start with the base address for the board.

  2. Add the motherboard base register address offset.

Motherboard Address =

Base Address + Motherboard Address Offset

= 0x9000 0400

0x9000 0000 + 0x0400

Module Registers:

Read/Write access to the Function module’s registers start with the base address of the board. Add the “content” for the Module Start Address and then, add the specific module function register offset.

For example, to address an appropriate/specific function module with a register offset:

  1. Start with the base address for the board.

  2. Add the value (contents) from the module base address offset register (contents/value of Motherboard Memory register for Module 1 (i.e., @ 0x0400) = 0x4000.

  3. Then add the specific module function Register Offset of interest (i.e., A/D Reading Ch 1 @ 0x1000)

(Function Specific) Address =

Base Address

Module Base Address Offset

Function Register Offset

= 0x9000 5000

0x9000 0000

0x4000

0x1000

MOTHERBOARD COMMON REGISTER DESCRIPTIONS

Module Information Registers

The Module Slot Addressing Ready, Module Slot Address, Module Slot Size and Module Slot ID registers provide information about the modules detected on the board.

Module Slot Addressing Ready

Function: Indicates that the module slots are ready to be addressed.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: 0xA5A5A5A5

Operational Settings: This register will contain the value of 0xA5A5A5A5 when the module addresses have been determined.

Module Slot Address

Function: Specifies the Base Address for the module in the specific slot position.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Based on board’s module configuration.

Operational Settings: 0x0000 0000 indicates no Module found.

Module Slot Size

Function: Specifies the Memory Size (in bytes) allocated for the module in the specific slot position.

Type: unsigned binary word (32-bit)

Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Assigned by factory for the module.

Operational Settings: 0x0000 0000 indicates no Module found.

Module Slot ID

Function: Specifies the Model ID for the module in the specified slot position.

Type: 4-character ASCII string

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Assigned by factory for the module.

Operational Settings: The Module ID is formatted as four ASCII bytes: three characters followed by a space. Module IDs are in little-endian order with a single space following the first three characters. For example, 'TL1' is '1LT', 'SC1' is '1CS' and so forth. Example below is for “TL1” (MSB justified). All value of 0000 0000 indicates no Module found.

Table 18. Module Slot ID

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: 'T' - 0x54)

ASCII Character (ex: 'L' - 0x4C)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: '1' - 0x31)

ASCII Space (' ' - 0x20)

Hardware Information Registers

The registers identified in this section provide information about the board’s hardware.

Product Serial Number

Function: Specifies the Board Serial Number.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Serial number assigned by factory for the board.

Operational Settings: N/A

Platform

Function: Specifies the Board Platform Identifier. Values are for the ASCII characters for the NAI valid platforms (Identifiers).

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Platform Identifier of the board

Operational Settings: Valid NAI platform and the associated value for the platform is shown below:

NAI Platform

Platform Identifier

ASCII Binary Values (Note: little-endian order of ascii values)

3U VPX

67

0x0000 3736

Model

Function: Specifies the Board Model Identifier. Value is for the ASCII characters for the NAI valid model.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Model Identifier of the board

Operational Settings: Example of NAI model and the associated value for the model is shown below:

NAI Model

ASCII Binary Values (Note: little-endian order of ascii values)

PPC

0x0043 5050

Generation

Function: Specifies the Board Generation. Identifier values are for the ASCII characters for the NAI valid generation identifiers.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Initialized Value: ASCII code is for the Generation Identifier of the board

Operational Settings: Example of NAI generation and the associated value for the generation is shown below:

NAI Generation

ASCII Binary Values (Note: little-endian order of ascii values)

2

0x0000 0032

Processor Count/Ethernet Count

Function: Specifies the Processor Count and Ethernet Count

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Operational Settings:

     Processor Count - Integer: indicates the number of unique processor types on the motherboard.

NAI Board

Processor Count

Description

6U-VPX

67PPC2

2

NXP QorIQ T2080 Quad-Core e6500 Processor+

Xilinx Zynq UltraScale+

     Ethernet Interface Count - Indicates the number of Ethernet interfaces on the product motherboard. For the 67PPC2, the Ethernet Count is set for Dual Ethernet = 2.

Table 19. Processor/Ethernet Interface Count

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Processor Count (See Table)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ethernet Count (0x0002)

Maximum Module Slot Count/ARM Platform Type

Function: Specifies the Maximum Module Slot Count and ARM Platform Type.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R

Operational Settings:

     Maximum Module Slot Count - Indicates the number of modules that can be installed on the product.

     ARM Platform - Altera = 1; Xilinx X1 = 2; Xilinx X2 = 3; UltraScale = 3

NAI Board

Maximum Module Slot Count

ARM Platform Type

6U-VPX

67PPC2

6

UltraScale = 3

Table 20. Maximum Module Slot Count / ARM Platform Type

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ARM Platform Type (See Table)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Maximum Module Slot Count (See Table)

Processor Operating System Registers

The registers in this section provide information about the Operating System that is running on the host processor on the motherboard. For boards that have more than one processor (ex. 75PPC1, 75INT2, 68PPC2, etc), the host processor would be the Power-PC or Intel processor.

ARM Processor Platform

Function: Specifies the ARM Processor on the motherboard. Values are for the ASCII characters for the NAI host processor platforms specified by the Operating System.

Type: 8-character ASCII string - Two (2) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: ASCII code is for the Host Platform Identifier of the board

Operational Settings: Valid NAI platforms based on Operating System loaded to host processor.

Table 21. Processor Platform (Note: 8-character ASCII string) (“aarch64”)

Word 1 (0x6372 6161 = “craa”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

'c' (0x63)

'r' (0x72)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x61)

'a' (0x61)

Word 2 (0x0034 3668 = “ 46h”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

null (0x00)

'4' (0x34)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'6' (0x36)

'h' (0x68)

Processor Operating System

Function: Specifies the Operating System installed for the host processor. Values are for the ASCII characters for the NAI supported operating systems.

Type: 12-character ASCII string - Three (3) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Operational Settings: ASCII, 12 characters; ('Linux', 'VxWorks', 'RTOS', …)

Table 22. Processor Platform (Note: 12-character ASCII string) (“Linux”)

Word 1 (0x756E 694C = “uniL”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

'u' (0x75)

'n' (0x6E)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'i' (0x69)

'L' (0x4C)

Word 2 (0x0000 0078 = “ x”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

null (0x00)

null (0x00)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

null (0x00)

'x' (0x78)

Word 3 (0x0000 0000 = “ ”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

null (0x00)

null (0x00)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

null (0x00)

null (0x00)

Processor Operating System Version

Function: Specifies the Version of Operating System installed for the host processor.

Type: 8-character ASCII string - Two (2) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Operational Settings: ASCII, 8 characters

Table 23. Processor Platform (Note: little-endian order of ascii values) (ex. “4.14.0”)

Word 1 (Ex. 0x3431 2E34 = “41.4”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

'4' (0x34)

'1' (0x31)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'.' (0x2E)

'3' (0x34)

Word 2 (Ex.0x 0000 302E = “0.”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

null (0x00)

null (0x00)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'0' (0x30)

'.' (0x2E)

Motherboard Firmware Information Registers

The registers in this section provide information on the revision of the firmware installed on the motherboard.

Motherboard Core (MBCore) Firmware Version

Function: Specifies the Version of the NAI factory provided Motherboard Core Application installed on the board.

Type: Two (2) unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The motherboard firmware version consists of four components: Major, Minor, Minor 2 and Minor 3.

Table 24. Motherboard Core Firmware Version (Note: little-endian order in register) (ex. 4.78.0.0)

Word 1 (Ex. 004E 0004 = 4.78 (Major.Minor)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minor (ex: 0x004E = 78)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Major (ex: 0x0004 = 4)

Word 2 (Ex. 0x0000 0000 = 0000 = 0.0 (Minor2.Minor3))

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minor 3 (ex: 0x000 = 0)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor 2 (ex: 0x000 = 0)

Motherboard Firmware Build Time/Date

Function: Specifies the Build Date/Time of the NAI factory provided Motherboard Core Application installed on the board.

Type: Two (2) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Operational Settings: The motherboard firmware time consists of the Build Date and Build Time.

Note
On some builds the the Date/Time fields are fixed to 0000 0000 to maintain binary consistency across builds.
Table 25. Motherboard Firmware Build Time (Note: little-endian order in register)

Word 1 - Build Date (ex. 0x0E05 07E5 = 2021-5-14)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Day (ex: 0x0E = 14)

Month (ex: 0x05 = 5)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year (ex: 0x07E5 = 2021)

Word 2 - Build Time (ex. 0x0005 3712 = 18:55:05)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

null (0x00)

Seconds (ex: 0x05 = 05)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minutes (ex: 0x37 = 55)

Hours (ex: 0x12 = 18)

Motherboard FPGA Firmware Version

Function: Specifies the Version of the NAI factory provided Motherboard FPGA installed on the board.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The motherboard FPGA firmware version consists of two components: Major, Minor.

Table 26. Motherboard FPGA Firmware Version (ex. 0x0005 0014 = 5.14)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major (ex: 0x0005 = 5)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor (ex: 0x0014 = 14)

Motherboard FPGA Compile Date/Time

Function: Specifies the Compile Date/Time of the NAI factory provided Motherboard FPGA installed on the board.

Type: unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Operational Settings: The motherboard firmware time consists of the Build Date and Time in the following format:

Table 27. Motherboard FPGA Compile Time (ex. 0x52AB 2CD6 = 05/10/21 18:51:22)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Day (D31:D27)

Month (D26:D23)

Year (D22:D17)

ex. 0x5

ex. 0x2

0xA

0xB

1

1

0

1

0

0

1

0

0

0

1

0

1

0

1

1

Day = 0x1A = 10

Month = 0x5 = 5

Year = 0x15 = 21

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Hour (D16:D12)

Minutes (D11:D6)

Seconds (D5:D0)

ex. 0x2

ex. 0xC

ex. 0xD

ex. 0x6

Hour = 0x12 = 18

Minutes = 0x33 = 51

Seconds = 0x16 = 22

Motherboard Monitoring Registers

The registers in this provide motherboard temperature measurement information, and where applicable the host processor processor measurements.

Temperature Readings Register

The temperature registers provide the current, maximum (from power-up) and minimum (from power-up) for the processor and PCB for Zynq processor, and for the Slave processor.

These registers are only available on Xilinx Generation 5 platforms, and are periodically populated by the motherboard core application, which only runs in Petalinux and BareMetal. For other operating systems, refer to the naibrd Software Support Kit (SSK) naibsp_system_Monitor_Temperature_Get() routine to manually retrieve the temperature (NOTE: this feature is typically utilized for development/factory use only; contact the factory for additional details on potential use, if required).

Function: Specifies the Measured Temperatures on Motherboard.

Type: signed byte (8-bits) for each temperature reading - Six (6) 32-bit words

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the measured temperatures based on the table below.

Operational Settings: The 8-bit temperature readings are signed bytes. For example, if the following register contains the value 0x6955 E7D8:

Example:

Table 28. Word 1 (Current UltraScale & Host Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

UltraScale Core Temperature

UltraScale PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Host Core Temperature

Host PCB Temperature

The values would represent the following temperatures:

Temperature Measurements

Data Bits

Value

Temperature (Celsius)

UltraScale Core Temperature

D31:D24

0x69

+105°

UltraScale PCB Temperature

D23:D16

0x55

+85°

Host Core Temperature

D15:D8

0xE7

-25°

Host PCB Temperature

D7:D0

0xD8

-40°

Temperature Readings
Table 29. Word 1 (Current UltraScale & Host Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

UltraScale Core Temperature

UltraScale PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Host Core Temperature

Host PCB Temperature

Table 30. Word 2 (Max Host Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

0x00

0x00

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Max Host Core Temperature

Max Host PCB Temperature

Table 31. Word 3 (Max UltraScale & Min Host Temperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

Max UltraScale Core Temperature

Max UltraScale PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Min Host Core Temperature

Min Host PCB Temperature00

Table 32. Word 4 (Reserved)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

0x00

0x00

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0x00

0x00

Table 33. Word 5 (Min UltraScaleTemperatures)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

Min UltraScale Core Temperature

Min UltraScale PCB Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0x00

0x00

Table 34. Word 6 (Reserved)
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16

0x00

0x00

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0x00

0x00

Higher Precision Temperature Readings Registers

These registers provide higher precision readings of the current UltraScale and PCB temperatures.

Higher Precision UltraScale Core Temperature

Function: Specifies the Higher Precision Measured UltraScale Core temperature on Motherboard Board.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured UltraScale Core temperature on Motherboard Board

Operational Settings: The upper 16-bits represent the signed integer part of the temperature, and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x002B 0271, this represents UltraScale Core Temperature = 43.625° Celsius, and value 0xFFF6 0177 represents -10.375° Celsius.

Table 35. Higher Precision UltraScale Core Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Motherboard PCB Temperature

Function: Specifies the Higher Precision Measured Motherboard PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Motherboard PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x0020 007D, this represents Interface PCB Temperature = 32.125° Celsius, and value 0xFFE8 036B represents -24.875° Celsius.

Table 36. Higher Precision Motherboard PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Motherboard Health Monitoring Registers

The registers in this section provide motherboard voltage, current and temperature measurement information.

Motherboard Sensor Summary Status

Function: The corresponding sensor bit is set if the sensor has crossed any of its thresholds.

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: This register provides a summary for motherboard sensors. When the corresponding sensor bit is set, the Sensor Threshold Status register for that sensor will indicate the threshold condition that triggered the event.

Table 37. Motherboard Sensor Summary Status

Bit(s)

Sensor

D31:D5

Reserved

D4

Motherboard PCB Temperature

D3

US+ Core Temperature

D2:D0

Reserved

Motherboard Sensor Registers

The registers listed in this section apply to each module sensor listed for the Motherboard Sensor Summary Status register.

Motherboard Sensor Registers

The registers listed in this section apply to each module sensor listed for the Motherboard Sensor Summary Status register. Each individual sensor register provides a group of registers for monitoring motherboard temperatures readings. From these registers, a user can read the current temperature of the sensor in addition to the minimum and maximum temperature readings since power-up. Upper and lower critical/warning temperature thresholds can be set and monitored from these registers. When a programmed temperature threshold is crossed, the Sensor Threshold Status register will set the corresponding bit for that threshold. The figure below shows the functionality of this group of registers when accessing the Zynq Core Temperature sensor as an example.

MB Sensor Registers US

Sensor Threshold Status

Function: Reflects which threshold has been crossed

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: The associated bit is set when the sensor reading exceed the corresponding threshold settings.

Table 38. Sensor Threshold Status

Bit(s)

Description

D31:4

Reserved

D3

Exceeded Upper Critical Threshold

D2

Exceeded Upper Warning Threshold

D1

Exceeded Lower Critical Threshold

D0

Exceeded Lower Warning Threshold

Sensor Current Reading

Function: Reflects current reading of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents current sensor reading as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Minimum Reading

Function: Reflects minimum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents minimum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Maximum Reading

Function: Reflects maximum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents maximum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Lower Warning Threshold

Function: Reflects lower warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC220 0000 represents temperature = -40.0° Celsius.

Sensor Lower Critical Threshold

Function: Reflects lower critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC25C 0000 represents temperature = -55.0° Celsius.

Sensor Upper Warning Threshold

Function: Reflects upper warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42AA 0000 represents temperature = 85.0° Celsius.

Sensor Upper Critical Threshold

Function: Reflects upper critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42FA 0000 represents temperature = 125.0° Celsius.

Ethernet Configuration Registers

The registers in this section provide information about the Ethernet Configuration for the two ports on the board.

Important: Regardless if the board is configured for one or two Ethernet ports, the second IP address cannot be on the same Subnet as the First IP Address. The table below provides examples of valid and invalid IP Addresses and Subnet Mask Addresses.

First Port (A) IP Address

First Port (A) Subnet Mask

Second Port (B) IP Address

Second Port (B) Subnet Mask

Result

192.168.1.5

255.255.255.0

192.168.2.5

255.255.255.0

Good

192.168.1.5

255.255.0.0

192.168.2.5

255.255.0.0

Conflict

192.168.1.5

255.255.0.0

192.168.2.5

255.255.255.0

Conflict

10.0.0.15

255.0.0.0

192.168.1.5

255.255.255.0

Good

Ethernet MAC Address and Ethernet Settings

Function: Specifies the Ethernet MAC Address and Ethernet Settings for the Ethernet port.

Type: Two (2) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet MAC Address consists of six octets. The Ethernet Settings are defined in table.

Table 39. Ethernet Settings

Bits

Description

Values

D31:D23

Reserved

0

D22:D21

Duplex

00 = Not Specified, 01 = Half Duplex, 10 = Full Duplex, 11 = Reserved

D20:D18

Speed

000 = Not Specified, 001 = 10 Mbps, 010 = 100 Mbps, 011 = 1000 Mbps, 100 = 2500 Mbps, 101 = 10000 Mbps, 110 = Reserved, 111 = Reserved

D17

Auto Negotiate

0 = Enabled, 1 = Disabled

D16

Static IP Address

0 = Enabled, 1 = Disabled

Table 40. Ethernet MAC Address and Ethernet Settings (Note: little-endian order in register)

Word 1 (Ethernet MAC Address (Octets 1-4)) (ex: aa:bb:cc:dd:ee:ff)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

MAC Address Octet 4 (ex: 0xDD)

MAC Address Octet 3 (ex: 0xCC)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

MAC Address Octet 2 (ex: 0xBB)

MAC Address Octet 1 (ex: 0xAA)

Word 2 (Ethernet MAC Address (Octets 5-6) and Ethernet Settings)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ethernet Settings (See table)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

MAC Address Octet 6 (ex: 0xFF)

MAC Address Octet 5 (ex: 0xEE)

Ethernet Interface Name

Function: Specifies the Ethernet Interface Name for the Ethernet port.

Type: 8-character ASCII string

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet Interface Name (eth0, eth1, etc) for the Ethernet port.

Table 41. Ethernet Interface Name (Note: little-endian order in register) (ex. “eth0”)*

Word 1 (Bit 0-31) (ex: 0x3068 7465 = “0hte”)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: '0' - 0x30)

ASCII Character (ex: 'h' - 0x68)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: 't' - 0x74)

ASCII Character (ex: 'e' - 0x65)

Word 2 (Bit 32-63) (ex: 0x0000 0000)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

ASCII Character (ex: null - 0x00)

ASCII Character (ex: null - 0x00)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

ASCII Character (ex: null - 0x00)

ASCII Character (ex: null - 0x00)

Ethernet IPv4 Address

Function: Specifies the Ethernet IPv4 Address for the Ethernet port.

Type: Three (3) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The Ethernet IPv4 Address consists of three parts: IPv4 Address, IPv4 Subnet Mask and IPv4 Gateway.

Table 42. Ethernet IPv4 Address (Note: little-endian order in register)

Word 1 (Ethernet IPv4 Address) (ex: 0x1001 A8C0 = 192.168.1.16)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Address Octet 4 (ex: 0x10 = 16)

IPv4 Address Octet 3 (ex: 0x01 = 1)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Address Octet 2 (ex: 0xA8 = 168)

IPv4 Address Octet 1 (ex: 0xC0 = 192)

Word 2 (Ethernet IPv4 Subnet) (ex: 0x00FF FFFF = 255.255.255.0)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Subnet Octet 4 (ex: 0x00 = 0)

IPv4 Subnet Octet 3 (ex: 0xFF = 255)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Subnet Octet 2 (ex: 0xFF = 255)

IPv4 Subnet Octet 1 (ex: 0xFF = 255)

Word 3 (Ethernet IPv4 Gateway) (ex: 0x0101 A8C0 = 192.168.1.1)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

IPv4 Gateway Octet 4 (ex: 0x01 = 1)

IPv4 Gateway Octet 3 (ex: 0x01 = 1)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IPv4 Gateway Octet 2 (ex: 0xA8 = 168)

IPv4 Gateway Octet 1 (ex: 0xC0 = 192)

Ethernet IPv6 Address

Function: Specifies the Ethernet IPv6 Address for the Ethernet port.

Type: Five (5) unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Operational Settings: The IPv6 Prefix length indicates the network portion of an IPv6 address using the following format:

  • IPv6 address/prefix length

  • Prefix length can range from 0 to 128

  • Typical prefix length is 64

The following is an illustration of IPv6 addressing with IPv6 Prefix length of 64.

64 bits

64 bits

Prefix

Interface ID

Prefix 1

Prefix 2

Prefix 3

Subnet ID

Interface ID 1

Interface ID 2

Interface ID 3

Interface ID 4

Example: 2002:c0a8:101:0:7c99:d118:9058:1235/64

2002

C0A8

0101

0000

7C99

D118

9058

1235

Table 43. Ethernet IPv6 Address (Note: little-endian order within 32-bit and 16-bit words in register) (ex. IPv6 Address: 2002:c0a8:101:0:7c99:d118:9058:1235 IPv6 Prefix: 64)

Word 1 (Ethernet IPv6 Address (Prefix 1-2)) (ex:0xA8C0 0220 = 2002 C0A8)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Prefix 2 (ex: 0xA8C0 = C0A8)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix 1 (ex: 0x0220 = 2002)

Word 2 (Ethernet IPv6 Address (Prefix 3/Subnet ID)) (ex:0x000 0101 = 0101 0000)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Subnet ID (ex: 0x0000 = 0000)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix 3 (ex: 0x0101 = 0101)

Word 3 (Ethernet IPv6 Address (Interface ID 1-2)) (ex: 0x18D1 997C = 7C99 D118)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Interface ID 2 (ex: 0x18D1 = D118)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Interface ID 1 (ex: 0x997C = 7C99)

Word 4 (Ethernet IPv6 Address (Interface ID 3-4)) (ex: 0x3512 5890 = 9058 1235)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Interface ID 4 (ex: 0x3512 = 1235)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Interface ID 3 (ex: 0x5890 = 9058)

Word 5 (Ethernet IPv6 Prefix Length) (ex:0x0000 0040)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Prefix Length (ex: 0x0040 = 64)

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Note
The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Sets where to direct the interrupt.

Type: unsigned binary word (32-bit)

Data Range: See table Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME

1

Direct Interrupt to ARM Processor (via SerDes) (Custom App on ARM or NAI Ethernet Listener App)

2

Direct Interrupt to PCIe Bus

5

Direct Interrupt to cPCI Bus

6

Modules Health Monitoring Registers

Module BIT Status

Function: Provides the ability to monitor the individual Module BIT Status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Operational Settings: The Module BIT Status registers provide the ability to monitor individual Module BIT results as Latched and current value. A 1 is any bit field indicates BIT failure for the Module in that slot.

Module BIT Status

Bit(s)

Description

D31:23

Reserved

D22

Module Slot 6 BIT Failure (current value)

D21

Module Slot 5 BIT Failure (current value)

D20

Module Slot 4 BIT Failure (current value)

D19

Module Slot 3 BIT Failure (current value)

D18

Module Slot 2 BIT Failure (current value)

D17

Module Slot 1 BIT Failure (current value)

D16

Reserved

D15:D7

Reserved

D6

Module Slot 6 BIT Failure - Latched

D5

Module Slot 5 BIT Failure - Latched

D4

Module Slot 4 BIT Failure - Latched

D3

Module Slot 3 BIT Failure - Latched

D2

Module Slot 2 BIT Failure - Latched

D1

Module Slot 1 BIT Failure - Latched

D0

Reserved

Scratchpad Area

Function: Registers reserved as scratch pad for customer use.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Operational Settings: This area in memory is reserved for customer use.

MOTHERBOARD FUNCTION REGISTER MAP

Key:

Bold Underline = Measurement/Status/Board Information

Bold Italic = Configuration/Control

Module Information Registers

0x03FC

Module Slot Addressing Ready

R

0x0400

Module Slot 1 Address

R

0x0404

Module Slot 2 Address

R

0x0408

Module Slot 3 Address

R

0x040C

Module Slot 4 Address

R

0x0410

Module Slot 5 Address

R

0x0414

Module Slot 6 Address

R

0x0430

Module Slot 1 Size

R

0x0434

Module Slot 2 Size

R

0x0438

Module Slot 3 Size

R

0x043C

Module Slot 4 Size

R

0x0440

Module Slot 5 Size

R

0x0444

Module Slot 6 Size

R

0x0460

Module Slot 1 ID

R

0x0464

Module Slot 2 ID

R

0x0468

Module Slot 3 ID

R

0x046C

Module Slot 4 ID

R

0x0470

Module Slot 5 ID

R

0x0474

Module Slot 6 ID

R

Hardware Information Registers

0x0020

Product Serial Number

R

0x0024

Platform

R

0x0028

Model

R

0x002C

Generation

R

0x0030

Processor Count/Ethernet Count

R

0x0034

Maximum Module Slot Count/ARM Platform Type

R

0x0038

Processor Platform (Bit 0-31)

R

0x003C

Processor Platform (Bit 32-63)

R

0x0040

Processor Operating System (Bit 0-31)

R

0x0044

Processor Operating System (Bit 32-63)

R

0x0048

Processor Operating System (Bit 64-95)

R

0x004C

Processor Operating System Version (Bit 0-31)

R

0x0050

Processor Operating System Version (Bit 32-63)

R

Motherboard Firmware Information Registers

Motherboard Core Information

0x0100

MB Core Major/Minor Version

R

0x0104

MB Core Minor 2/3 Version

R

0x0108

MB Core Build Date (Bit 0-31)

R

0x010C

MB Core Build Date (Bit 32-63)

R

Motherboard FPGA Information

0x0270

MB FPGA Revision

R

0x0274

MB FPGA Compile Date/Time

R

Motherboard Monitoring Registers

Temperature Readings

0x0200

Current UltraScale & Host Temperatures

R

0x0204

Max Host Temperatures

R

0x0208

Max UltraScale & Min Host Temperatures

R

0x020C

Reserved

R

0x0210

Min UltraScale Temperatures

R

0x0214

Reserved

R

Higher Precision Temperature Readings

0x0230

Current UltraScale Core Temperature

R

0x0234

Current UltraScale PCB Temperature

R

Motherboard Health Monitoring Registers

0x20F8

Motherboard Sensor Summary Status

R

67PPC2 Img11

Ethernet Configuration Registers

0x0070

Ethernet A MAC (Octets 1-4)

R

0x0074

Ethernet A MAC (Octets 5-6)/Misc Settings

R

0x0078

Ethernet A Interface Name (Bit 0-31)

R

0x007C

Ethernet A Interface Name (Bit 32-63)

R

0x0080

Ethernet A IPv4 Address

R

0x0084

Ethernet A IPv4 Subnet Mask

R

0x0088

Ethernet A IPv4 Gateway

R

0x008C

Ethernet A IPv6 Address (Prefix 1-2)

R

0x0090

Ethernet A IPv6 Address (Prefix 3/Subnet ID)

R

0x0094

Ethernet A IPv6 Address (Interface ID 1-2)

R

0x0098

Ethernet A IPv6 Address (Interface ID 3-4)

R

0x009C

Ethernet A IPv6 Prefix Length

R

0x00A0

Ethernet B MAC (Octets 1-4)

R

0x00A4

Ethernet B MAC (Octets 5-6)/Misc Settings

R

0x00A8

Ethernet B Interface Name (Bit 0-31)

R

0x00AC

Ethernet B Interface Name (Bit 32-63)

R

0x00B0

Ethernet B IPv4 Address

R

0x00B4

Ethernet B IPv4 Subnet Mask

R

0x00B8

Ethernet B IPv4 Gateway

R

0x00BC

Ethernet B IPv6 Address (Prefix 1-2)

R

0x00C0

Ethernet B IPv6 Address (Prefix 3/Subnet ID)

R

0x00C4

Ethernet B IPv6 Address (Interface ID 1-2)

R

0x00C8

Ethernet B IPv6 Address (Interface ID 3-4)

R

0x00CC

Ethernet B IPv6 Prefix Length

R

Interrupt Vector and Steering

0x0500 - 0x057C

Module 1 Interrupt Vector 1 - 32

R/W

0x0600 - 0x067C

Module 1 Interrupt Steering 1 - 32

R/W

0x0700 - 0x077C

Module 2 Interrupt Vector 1 - 32

R/W

0x0800 - 0x087C

Module 2 Interrupt Steering 1 - 32

R/W

0x0900 - 0x097C

Module 3 Interrupt Vector 1 - 32

R/W

0x0A00 - 0x0A7C

Module 3 Interrupt Steering 1 - 32

R/W

0x0B00 - 0x0B7C

Module 4 Interrupt Vector 1 - 32

R/W

0x0C00 - 0x0C7C

Module 4 Interrupt Steering 1 - 32

R/W

0x0D00 - 0x0D7C

Module 5 Interrupt Vector 1 - 32

R/W

0x0E00 - 0x0E7C

Module 5 Interrupt Steering 1 - 32

R/W

0x0F00 - 0x0F7C

Module 6 Interrupt Vector 1 - 32

R/W

0x1000 - 0x107C

Module 6 Interrupt Steering 1 - 32

R/W

Module Health Monitoring Registers

Module BIT Status

0x0128

Module BIT Status (current and latched)

R

Scratchpad Area

0x3800 - 0x3BFF

Scratchpad Registers

R/W

ETHERNET

(For detailed supplement, please visit the NAI web-site specific product page and refer to: Ethernet Interface for Generation 5 SBC and Embedded IO Boards Specification)

The Ethernet Interface Option allows communications and control access to all function modules either via the system BUS or Ethernet ports 1 or 2.

Ethernet 1

Ethernet 2

The default IP address:

192.168.1.16

192.168.2.16

The default subnet:

255.255.255.0

255.255.255.0

The default gateway:

192.168.1.1

192.168.2.1

Note
Actual "as shipped" card Ethernet default IP addresses may vary based upon final ATP configuration(s).) Ethernet Port IP addresses may be field re-flashed to new default programmed addressed via use of the “IP Configuring for Ethernet Supported Boards” FLASH software support kit, available/documented from the specific product web page.

The NAI interface supports IPv4 and IPv6 and both the TCP and UDP protocols. The Ethernet Operation Mode Command Listener application running on the motherboard host processor implements the operation interface. The listener is operational on startup through the nai_MBStartup process and listen on specific ports for commands to process. The default ports are listed below:

  • TCP1 - Port 52801

  • TCP2 - Port 52802

  • UDP1 - Port 52801

  • UDP2 - Port 52802

While the listener is active, note that interrupts from the motherboard do not trigger. The listener can be disabled by turning off the nai_MBStartup process through the Motherboard EEPROM. To turn off nai_MBStartup use the command mbeeprom_util set MBStartupInitOnlyFlag 1 in the console, either by serial port or telnet to the motherboard, and then reboot the system. To turn on the nai_MBStartup use the command mbeeprom_util set MBStartupInitOnlyFlag 0 in the console, either by serial port or telnet to the motherboard, and then reboot the system.

Ethernet Message Framework

The interface uses a specific message framework for all commands and responses. All messages begin with a Preamble code and end with a Postamble code. The message framework is shown below.

Preamble

2 bytes Always 0xD30F

SequenceNo

2 bytes

Type Code

2 byte

Message Length

(2 bytes)

Payload

(0..1414 bytes)

Postamble

2 bytes Always 0xF03D

Message Elements

Preamble

The Preamble is used to delineate the beginning of a message frame. The Preamble is always 0xD30F.

SequenceNo

The SequenceNo is used to associate Commands with Responses.

Type Code

Type Codes are used to define the type of Command or Response the message contains.

Message Length

The Message Length is the number of bytes in the complete message frame starting with and including the Preamble and ending with and including the Postamble.

Payload

The Payload contains the unique data that makes up the command or response. Payloads vary based on command type.

Postamble

The Postamble is use to delineate the end of a message frame. The Postamble is always 0xF03D.

Notes

  1. The messaging protocol applies only to card products.

  2. Messaging is managed by the connected (client) computer. The client computer will send a single message and wait for a reply from the card. Multiple cards may be managed from a single computer, subject to channel and computer capacity.

Board Addressing

The interface provides two main addressing areas: Onboard and Off-board.

Onboard addressing refers to accessing resources located on the board that is implementing the operation interface (including its modules).

Off-board addressing refers to accessing resources located on another board reachable via VME, PCI, or other bus. Off-board addressing requires a Master/Slave configuration.

The user must always specify if a particular address is Onboard or Off-board. See the command descriptions for the onboard and off-board flags.

Within a particular board (Onboard or Off-board), the address space is broken up into two areas: Motherboard Common Address Space and Module Address Space. All addresses are 32-bit.

Motherboard Common Address Space starts at 0x00000000 and ends at 0x00004000. This is a 4Kx32-bit address space (16 kbytes).

Module Address Space starts at 0x00004000. Module addressing is dynamically configured at startup. NAI boards support between 1 and 6 modules. The minimum module address space size is 4Kx32 (16 kbytes) and module sizes are always a multiple of 4Kx32.

Module addressing is dynamic and cumulative. The first detected module (starting with Slot 1) is given an address of 0x00004000. The 2nd detected Module is given an address of:

First_Detected_Module_Address + First_Detected_Module_Size

Note
Slots do not define addresses.

If no module is detected in a module slot, that slot is not given an address. Therefore, if the first detected Module is in Slot 2, then that module address will be 0x00004000. If the next detected module is in Slot 4, then the address of that Module will be:

Second_Detected_Module_Address = First_Detected_Module_Address + First_Detected_Module_Size

If a 3rd Module is detected in Slot 6, then the address of that Module will be:

Third_Detected_Module_Address = Second_Detected_Module_Address + Second_Detected_Module_Size

Note
Module addresses are calculated at each board startup when the modules are detected. Therefore, if a module should fail to be detected due to malfunction or because it was removed from the motherboard, the addresses of the modules that follow it in the slot sequence will be altered. This is important to note when programming to this interface.

Users can always retrieve the Module Addresses, Module Sizes and Module IDs from the fixed Motherboard Common address area. This data is set upon each board startup. While the Module Addressing is dynamic, the address where these addresses are stored is fixed. For example, to find the startup address of the module location in Slot 3, refer to the MB Common Address 0x00000408 from the Motherboard Common Addresses table that follows.

Ethernet Wiring Convention

RJ-45 Pin

T568A Color

T568B Color

10/100Base-T

1000BASE-T

NAI wiring convention

1

white/green stripe

white/orange stripe

TX+

DA+

ETH-TP0+

2

green

orange

TX-

DA-

ETH-TP0-

3

white/orange stripe

white/green stripe

RX+

DB+

ETH-TP1+

4

blue

blue

DC+

ETH-TP2+

5

white/blue stripe

white/blue stripe

DC-

ETH-TP2-

6

orange

green

RX-

DB-

ETH-TP1-

7

white/brown stripe

white/brown stripe

DD+

ETH-TP3+

8

brown

brown

DD-

ETH-TP3-

67PPC2 CONNECTOR/PIN-OUT INFORMATION

Front and Rear Panel Connectors

The 67PPC2 6U OpenVPX Multifunction I/O board is available in two configurations: convection-cooled and conduction-cooled. The 67PPC2 follows the OpenVPX “Payload Slot Profile” configured as:

Slot profile: SLT6-PAY-2F2U2T-10.2.5

Module profile:

MOD6-PAY-2F2U2T-12.2.5-3

User I/O is available through the (J1, J2, J3, J4, J5, J6) front panel connectors when the card is configured with front panel I/O and through the OpenVPX user defined rear I/O connectors P1, P2, P3, P4, P5, P6 (see part number and pin-out information).

67PPC2 PinNotes

Front Panel Connectors J1-J6 (Convection Cooled)

44-pin male connectors, 2mm, Harwin P/N M80-5114422.

Mate kit: "Custom Hood Kit" part # M80C108448C (or equivalent); Includes connector, backshell, pins & jackscrews. This mating connector kit may be purchased separately as NAI P/N 05-0119 (contact factory).

Panel LEDs

Front Panel LEDs indications (only available on air-cooled units).

LED

ILLUMINATED

EXTINGUISHED

GRN:

Blinking: Initializing

Steady On: Power-On/Ready

Power off

RED:

Module BIT error

No BIT fault

YEL: (flash)

Card access (bus or Gig-E activity)

No card activity

Chassis Ground

Front Panel Connectors: J1 - J6 pin-1 is chassis GND. Jack screw sockets are chassis GND.

Rear Connectors: Not available.

Front Panel System (Power/Signal) Ground Reference

Front Panel: J1 - J6 pin-23 is System (SYS) GND (referenced to card power/system ground).

Front I/O Utility Connector J7

The 67PPC2 utilizes a Mini-HDMI type card edge connector J7, available on either convection or conduction-cooled configurations that provides the following signals:

  • Serial (port 1)

  • USB 2.0

  • Ethernet port 1 (factory configuration option - Ethernet port1 may be redirected to rear I/O J2)

NAI also provides an optional “breakout” adapter board (NAI P/N 75SBC4-BB) with a mini-HDMI to mini-HDMI type cable. The “breakout” adapter board and a Micro-HDMI cable (NAI P/N 75SBC4-BB) allow for standard I/O connections to Ethernet and asynchronous serial (DB9). Consult the factory for availability.

Front J7 Standard Configuration Option

J7-01

N/C

N/C

J7-02

N/C

ETH1-TP0+

J7-03

N/C

ETH-TP0-

J7-04

N/C

N/C

J7-05

N/C

ETH1-TP1+

J7-06

N/C

ETH1-TP1-

J7-07

N/C

N/C

J7-08

N/C

ETH1-TP2+

J7-09

N/C

ETH1-TP2-

J7-10

N/C

N/C

J7-11

N/C

ETH1-TP3+

J7-12

N/C

ETH1-TP3-

J7-13

GND

GND

J7-14

N/C

+5V-UBSF

J7-15

N/C

USBF-DP

J7-16

N/C

USBF-DM

J7-17

SER1-RXD

SER1-RXD

J7-18

SER1-TXD

SER1-TXD

J7-19

GND

GND

j7

Signal Descriptions J7

Signal Name

Description

ETH1-TPx

Ethernet port 1 signals (4 pair) 10/100/1000 twisted pair signals (Optional - available only if NOT re-directed to rear I/O (see part number configuration options)

USBF-DP

Front Panel USB Data Positive

USBF-DN

Front Panel USB Data Minus

SER1-TXD

Asynchronous transmit serial data port 1 (out) / RS232 debug/console port only

SER1-RXD

Asynchronous received serial data port 1 (in) / RS232 debug/console port only

GND

System Ground (return)

Rear I/O VPX Connectors P0-P6 (Conduction-Cooled)

The 67PPC2 6U OpenVPX multifunction I/O board provides interface via the rear VPX connectors.

Rear I/O Summary

Signals defined as N/C currently have no functionality associated and are not required for general operation.

P0 - Utility plane. Contains the following signal definitions:

Power

Primary +5V, +3.3V_AUX, +/- 12V and System GND

Geographical Address Pins

GA0# - GA4#, GAP#

Card reset

SYSRST# signal

Non-Volatile Memory Read Only

NVMRO

IPMC

IMPB-SDA-A, IMPB-SDA-B, IMPB-SCL-A, IMPB-SCL-B

VPX AUX/REF CLK

(Not used)

P1 - Defined as Data/Control Planes (User defined I/O secondary)

High Speed Switched Fabric Interface

12 x1 PCIe (end point only)

Ethernet

Gig-E port option(s) are available and defined

(See Part Number Designation section)

P2 - User defined I/O (primary)

P3 - User defined I/O (primary)

P4 - Defined as Control Plane (User defined I/O secondary)

P5 - User defined I/O (primary)

P6 - User defined I/O (primary)

67PPC2 Img13

Rear I/O Utility Plane (P0)

The P0 (Utility) Plane contains the primary power, bus and utility signals for the OpenVPX board. Additionally, several of the user defined pins can be utilized for Geographical Addressing and a parallel SYSRST# signal. Signals defined as N/C currently have no functionality associated and is not required for general operation.

67PPC2 P0pinouts
67PPC2 Img14

Rear I/O Data/Control Planes (P1)

The 67PPC2 has twelve PCIe ver 2.0 Ultra-Thin pipes. Additionally, the 67PPC2 can be commanded/controlled via Gig-E (options for either 10/100/1000Base-T and/or 1000Base-KX (SerDes) Interfaces). Additional module I/O is also defined on the P1 user defined plane. Signals defined as N/C currently have no functionality associated or are considered optional and are not required for general operation.

67PPC2 P1
67PPC2 P1pinouts

USER I/O - Defined Area (User Defined I/O) (P2-P6)

The following pages contain the 'user defined' I/O data area front and rear panel pin-outs with their respective signal designations for all module types currently offered/configured for the 67PPC2 platform. The card is designed to route the function module I/O signals to the front and rear I/O connector. The following I/O connector pin-out is based upon the function module designated in the module slot. Signals defined as N/C currently have no functionality associated or are considered optional and are not required for general operation.

67PPC2 Img16
67PPC2 P2pinouts
67PPC2 P3pinouts
67PPC2 P4pinouts
67PPC2 P5pinouts
67PPC2 P6pinouts

J1-J6 Front Panel Connector Pinout Mapping Summary (Convection-Cooled)

The following provides connector/pinout data for Front Panel connectors J1 through J6. Each connector provides 44 pins of I/O.

67PPC2 Img17

Front Panel Connectors J1-J6 Generic User I/O Mapping

Table 44. 67PPC2 J1 (M1) Front Panel I/O

(System Ground REF)

GND

1

23

GND

(System Ground REF)

M1_DAT01

S-MOD-M1-DAT01

2

24

S-MOD-M1-DAT02

M1_DAT02

M1_DAT03

S-MOD-M1-DAT03

3

25

S-MOD-M1-DAT04

M1_DAT04

M1_DAT25

S-MOD-M1-DAT25

4

26

S-MOD-M1-DAT26

M1_DAT26

M1_DAT05

S-MOD-M1-DAT05

5

27

S-MOD-M1-DAT06

M1_DAT06

M1_DAT33

S-MOD-M1-DAT33

6

28

S-MOD-M1-DAT34

M1_DAT34

M1_DAT07

S-MOD-M1-DAT07

7

29

S-MOD-M1-DAT08

M1_DAT08

M1_DAT09

S-MOD-M1-DAT09

8

30

S-MOD-M1-DAT10

M1_DAT10

M1_DAT27

S-MOD-M1-DAT27

9

31

S-MOD-M1-DAT28

M1_DAT28

M1_DAT11

S-MOD-M1-DAT11

10

32

S-MOD-M1-DAT12

M1_DAT12

M1_DAT35

S-MOD-M1-DAT35

11

33

S-MOD-M1-DAT36

M1_DAT36

M1_DAT13

S-MOD-M1-DAT13

12

34

S-MOD-M1-DAT14

M1_DAT14

M1_DAT15

S-MOD-M1-DAT15

13

35

S-MOD-M1-DAT16

M1_DAT16

M1_DAT29

S-MOD-M1-DAT29

14

36

S-MOD-M1-DAT30

M1_DAT30

M1_DAT17

S-MOD-M1-DAT17

15

37

S-MOD-M1-DAT18

M1_DAT18

M1_DAT37

S-MOD-M1-DAT37

16

38

S-MOD-M1-DAT38

M1_DAT38

M1_DAT19

S-MOD-M1-DAT19

17

39

S-MOD-M1-DAT20

M1_DAT20

M1_DAT21

S-MOD-M1-DAT21

18

40

S-MOD-M1-DAT22

M1_DAT22

M1_DAT31

S-MOD-M1-DAT31

19

41

S-MOD-M1-DAT32

M1_DAT32

M1_DAT23

S-MOD-M1-DAT23

20

42

S-MOD-M1-DAT24

M1_DAT24

M1_DAT39

S-MOD-M1-DAT39

21

43

S-MOD-M1-DAT40

M1_DAT40

N/C

22

44

N/C

Table 45. 67PPC2 J2 (M2) Front Panel I/O

(System Ground REF)

GND

1

23

GND

(System Ground REF)

M2_DAT01

S-MOD-M2-DAT01

2

24

S-MOD-M2-DAT02

M2_DAT02

M2_DAT03

S-MOD-M2-DAT03

3

25

S-MOD-M2-DAT04

M2_DAT04

M2_DAT25

S-MOD-M2-DAT25

4

26

S-MOD-M2-DAT26

M2_DAT26

M2_DAT05

S-MOD-M2-DAT05

5

27

S-MOD-M2-DAT06

M2_DAT06

M2_DAT33

S-MOD-M2-DAT33

6

28

S-MOD-M2-DAT34

M2_DAT34

M2_DAT07

S-MOD-M2-DAT07

7

29

S-MOD-M2-DAT08

M2_DAT08

M2_DAT09

S-MOD-M2-DAT09

8

30

S-MOD-M2-DAT10

M2_DAT10

M2_DAT27

S-MOD-M2-DAT27

9

31

S-MOD-M2-DAT28

M2_DAT28

M2_DAT11

S-MOD-M2-DAT11

10

32

S-MOD-M2-DAT12

M2_DAT12

M2_DAT35

S-MOD-M2-DAT35

11

33

S-MOD-M2-DAT36

M2_DAT36

M2_DAT13

S-MOD-M2-DAT13

12

34

S-MOD-M2-DAT14

M2_DAT14

M2_DAT15

S-MOD-M2-DAT15

13

35

S-MOD-M2-DAT16

M2_DAT16

M2_DAT29

S-MOD-M2-DAT29

14

36

S-MOD-M2-DAT30

M2_DAT30

M2_DAT17

S-MOD-M2-DAT17

15

37

S-MOD-M2-DAT18

M2_DAT18

M2_DAT37

S-MOD-M2-DAT37

16

38

S-MOD-M2-DAT38

M2_DAT38

M2_DAT19

S-MOD-M2-DAT19

17

39

S-MOD-M2-DAT20

M2_DAT20

M2_DAT21

S-MOD-M2-DAT21

18

40

S-MOD-M2-DAT22

M2_DAT22

M2_DAT31

S-MOD-M2-DAT31

19

41

S-MOD-M2-DAT32

M2_DAT32

M2_DAT23

S-MOD-M2-DAT23

20

42

S-MOD-M2-DAT24

M2_DAT24

M2_DAT39

S-MOD-M2-DAT39

21

43

S-MOD-M2-DAT40

M2_DAT40

N/C

22

44

N/C

Table 46. 67PPC2 J3 (M3) Front Panel I/O

(System Ground REF)

GND

1

23

GND

(System Ground REF)

M3_DAT01

S-MOD-M3-DAT01

2

24

S-MOD-M3-DAT02

M3_DAT02

M3_DAT03

S-MOD-M3-DAT03

3

25

S-MOD-M3-DAT04

M3_DAT04

M3_DAT25

S-MOD-M3-DAT25

4

26

S-MOD-M3-DAT26

M3_DAT26

M3_DAT05

S-MOD-M3-DAT05

5

27

S-MOD-M3-DAT06

M3_DAT06

M3_DAT33

S-MOD-M3-DAT33

6

28

S-MOD-M3-DAT34

M3_DAT34

M3_DAT07

S-MOD-M3-DAT07

7

29

S-MOD-M3-DAT08

M3_DAT08

M3_DAT09

S-MOD-M3-DAT09

8

30

S-MOD-M3-DAT10

M3_DAT10

M3_DAT27

S-MOD-M3-DAT27

9

31

S-MOD-M3-DAT28

M3_DAT28

M3_DAT11

S-MOD-M3-DAT11

10

32

S-MOD-M3-DAT12

M3_DAT12

M3_DAT35

S-MOD-M3-DAT35

11

33

S-MOD-M3-DAT36

M3_DAT36

M3_DAT13

S-MOD-M3-DAT13

12

34

S-MOD-M3-DAT14

M3_DAT14

M3_DAT15

S-MOD-M3-DAT15

13

35

S-MOD-M3-DAT16

M3_DAT16

M3_DAT29

S-MOD-M3-DAT29

14

36

S-MOD-M3-DAT30

M3_DAT30

M3_DAT17

S-MOD-M3-DAT17

15

37

S-MOD-M3-DAT18

M3_DAT18

M3_DAT37

S-MOD-M3-DAT37

16

38

S-MOD-M3-DAT38

M3_DAT38

M3_DAT19

S-MOD-M3-DAT19

17

39

S-MOD-M3-DAT20

M3_DAT20

M3_DAT21

S-MOD-M3-DAT21

18

40

S-MOD-M3-DAT22

M3_DAT22

M3_DAT31

S-MOD-M3-DAT31

19

41

S-MOD-M3-DAT32

M3_DAT32

M3_DAT23

S-MOD-M3-DAT23

20

42

S-MOD-M3-DAT24

M3_DAT24

M3_DAT39

S-MOD-M3-DAT39

21

43

S-MOD-M3-DAT40

M3_DAT40

N/C

22

44

N/C

Table 47. 67PPC2 J4 (M4) Front Panel I/O

(System Ground REF)

GND

1

23

GND

(System Ground REF)

M4_DAT01

S-MOD-M4-DAT01

2

24

S-MOD-M4-DAT02

M4_DAT02

M4_DAT03

S-MOD-M4-DAT03

3

25

S-MOD-M4-DAT04

M4_DAT04

M4_DAT25

S-MOD-M4-DAT25

4

26

S-MOD-M4-DAT26

M4_DAT26

M4_DAT05

S-MOD-M4-DAT05

5

27

S-MOD-M4-DAT06

M4_DAT06

M4_DAT33

S-MOD-M4-DAT33

6

28

S-MOD-M4-DAT34

M4_DAT34

M4_DAT07

S-MOD-M4-DAT07

7

29

S-MOD-M4-DAT08

M4_DAT08

M4_DAT09

S-MOD-M4-DAT09

8

30

S-MOD-M4-DAT10

M4_DAT10

M4_DAT27

S-MOD-M4-DAT27

9

31

S-MOD-M4-DAT28

M4_DAT28

M4_DAT11

S-MOD-M4-DAT11

10

32

S-MOD-M4-DAT12

M4_DAT12

M4_DAT35

S-MOD-M4-DAT35

11

33

S-MOD-M4-DAT36

M4_DAT36

M4_DAT13

S-MOD-M4-DAT13

12

34

S-MOD-M4-DAT14

M4_DAT14

M4_DAT15

S-MOD-M4-DAT15

13

35

S-MOD-M4-DAT16

M4_DAT16

M4_DAT29

S-MOD-M4-DAT29

14

36

S-MOD-M4-DAT30

M4_DAT30

M4_DAT17

S-MOD-M4-DAT17

15

37

S-MOD-M4-DAT18

M4_DAT18

M4_DAT37

S-MOD-M4-DAT37

16

38

S-MOD-M4-DAT38

M4_DAT38

M4_DAT19

S-MOD-M4-DAT19

17

39

S-MOD-M4-DAT20

M4_DAT20

M4_DAT21

S-MOD-M4-DAT21

18

40

S-MOD-M4-DAT22

M4_DAT22

M4_DAT31

S-MOD-M4-DAT31

19

41

S-MOD-M4-DAT32

M4_DAT32

M4_DAT23

S-MOD-M4-DAT23

20

42

S-MOD-M4-DAT24

M4_DAT24

M4_DAT39

S-MOD-M4-DAT39

21

43

S-MOD-M4-DAT40

M4_DAT40

N/C

22

44

N/C

Table 48. 67PPC2 J5 (M5) Front Panel I/O *

(System Ground REF)

GND

1

23

GND

(System Ground REF)

M5_DAT01

S-MOD-M5-DAT01

2

24

S-MOD-M5-DAT02

M5_DAT02

M5_DAT03

S-MOD-M5-DAT03

3

25

S-MOD-M5-DAT04

M5_DAT04

M5_DAT25

S-MOD-M5-DAT25

4

26

S-MOD-M5-DAT26

M5_DAT26

M5_DAT05

S-MOD-M5-DAT05

5

27

S-MOD-M5-DAT06

M5_DAT06

M5_DAT33

S-MOD-M5-DAT33

6

28

S-MOD-M5-DAT34

M5_DAT34

M5_DAT07

S-MOD-M5-DAT07

7

29

S-MOD-M5-DAT08

M5_DAT08

M5_DAT09

S-MOD-M5-DAT09

8

30

S-MOD-M5-DAT10

M5_DAT10

M5_DAT27

S-MOD-M5-DAT27

9

31

S-MOD-M5-DAT28

M5_DAT28

M5_DAT11

S-MOD-M5-DAT11

10

32

S-MOD-M5-DAT12

M5_DAT12

M5_DAT35

S-MOD-M5-DAT35

11

33

S-MOD-M5-DAT36

M5_DAT36

M5_DAT13

S-MOD-M5-DAT13

12

34

S-MOD-M5-DAT14

M5_DAT14

M5_DAT15

S-MOD-M5-DAT15

13

35

S-MOD-M5-DAT16

M5_DAT16

M5_DAT29

S-MOD-M5-DAT29

14

36

S-MOD-M5-DAT30

M5_DAT30

M5_DAT17

S-MOD-M5-DAT17

15

37

S-MOD-M5-DAT18

M5_DAT18

M5_DAT37

S-MOD-M5-DAT37

16

38

S-MOD-M5-DAT38

M5_DAT38

M5_DAT19

S-MOD-M5-DAT19

17

39

S-MOD-M5-DAT20

M5_DAT20

M5_DAT21

S-MOD-M5-DAT21

18

40

S-MOD-M5-DAT22

M5_DAT22

M5_DAT31

S-MOD-M5-DAT31

19

41

S-MOD-M5-DAT32

M5_DAT32

M5_DAT23

S-MOD-M5-DAT23

20

42

S-MOD-M5-DAT24

M5_DAT24

M5_DAT39

S-MOD-M5-DAT39

21

43

S-MOD-M5-DAT40

M5_DAT40

N/C

22

44

N/C

Table 49. 67PPC2 J6 (M6) Front Panel I/O *

(System Ground REF)

GND

1

23

GND

(System Ground REF)

M6_DAT01

S-MOD-M6-DAT01

2

24

S-MOD-M6-DAT02

M6_DAT02

M6_DAT03

S-MOD-M6-DAT03

3

25

S-MOD-M6-DAT04

M6_DAT04

M6_DAT25

S-MOD-M6-DAT25

4

26

S-MOD-M6-DAT26

M6_DAT26

M6_DAT05

S-MOD-M6-DAT05

5

27

S-MOD-M6-DAT06

M6_DAT06

M6_DAT33

S-MOD-M6-DAT33

6

28

S-MOD-M6-DAT34

M6_DAT34

M6_DAT07

S-MOD-M6-DAT07

7

29

S-MOD-M6-DAT08

M6_DAT08

M6_DAT09

S-MOD-M6-DAT09

8

30

S-MOD-M6-DAT10

M6_DAT10

M6_DAT27

S-MOD-M6-DAT27

9

31

S-MOD-M6-DAT28

M6_DAT28

M6_DAT11

S-MOD-M6-DAT11

10

32

S-MOD-M6-DAT12

M6_DAT12

M6_DAT35

S-MOD-M6-DAT35

11

33

S-MOD-M6-DAT36

M6_DAT36

M6_DAT13

S-MOD-M6-DAT13

12

34

S-MOD-M6-DAT14

M6_DAT14

M6_DAT15

S-MOD-M6-DAT15

13

35

S-MOD-M6-DAT16

M6_DAT16

M6_DAT29

S-MOD-M6-DAT29

14

36

S-MOD-M6-DAT30

M6_DAT30

M6_DAT17

S-MOD-M6-DAT17

15

37

S-MOD-M6-DAT18

M6_DAT18

M6_DAT37

S-MOD-M6-DAT37

16

38

S-MOD-M6-DAT38

M6_DAT38

M6_DAT19

S-MOD-M6-DAT19

17

39

S-MOD-M6-DAT20

M6_DAT20

M6_DAT21

S-MOD-M6-DAT21

18

40

S-MOD-M6-DAT22

M6_DAT22

M6_DAT31

S-MOD-M6-DAT31

19

41

S-MOD-M6-DAT32

M6_DAT32

M6_DAT23

S-MOD-M6-DAT23

20

42

S-MOD-M6-DAT24

M6_DAT24

M6_DAT39

S-MOD-M6-DAT39

21

43

S-MOD-M6-DAT40

M6_DAT40

N/C

22

44

N/C

Note
*High Speed Modules are Rear I/O, Only

Front & Rear User I/O Mapping (Global)

Front/Rear User I/O Mapping (for reference) is shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Module Operational Manuals.

Slot 1

Slot 2

Slot 3

Module Signal (Ref Only)

Front I/O J1 44-pin

Rear I/O P6

Global (MB)

Front I/O J2 44-pin

Rear I/O P6

Rear I/O P5

Global (MB)

Front I/O J3 44-pin

Rear I/O P5

Global (MB)

DATIO1

2

E16

2

E6

2

E12

DATIO2

24

F16

24

F6

24

F12

DATIO3

3

B16

3

B6

3

B12

DATIO4

25

C16

25

C6

25

C12

DATIO5

5

D15

5

D5

5

D11

DATIO6

27

E15

27

E5

27

E11

DATIO7

7

A15

7

A5

7

A11

DATIO8

29

B15

29

B5

29

B11

DATIO9

8

E14

8

E4

8

E10

DATIO10

30

F14

30

F4

30

F10

DATIO11

10

B14

10

B4

10

B10

DATIO12

32

C14

32

C4

32

C10

DATIO13

12

D13

12

D3

12

D9

DATIO14

34

E13

34

E3

34

E9

DATIO15

13

A13

13

A3

13

A9

DATIO16

35

B13

35

B3

35

B9

DATIO17

15

E12

15

E2

15

E8

DATIO18

37

F12

37

F2

37

F8

DATIO19

17

B12

17

B2

17

B8

DATIO20

39

C12

39

C2

39

C8

DATIO21

18

D11

18

D1

18

D7

DATIO22

40

E11

40

E1

40

E7

DATIO23

20

A11

20

A1

20

A7

DATIO24

42

B11

42

B1

42

B7

DATIO25

4

E10

4

E16

4

E6

DATIO26

26

F10

26

F16

26

F6

DATIO27

9

B10

9

B16

9

B6

DATIO28

31

C10

31

C16

31

C6

DATIO29

14

D9

14

D15

14

D5

DATIO30

36

E9

36

E15

36

E5

DATIO31

19

A9

19

A15

19

A5

DATIO32

41

B9

41

B15

41

B5

DATIO33

6

E8

6

E14

6

E4

DATIO34

28

F8

28

F14

28

F4

DATIO35

11

B8

11

B14

11

B4

DATIO36

33

C8

33

C14

33

C4

DATIO37

16

D7

16

D13

16

D3

DATIO38

38

E7

38

E13

38

E3

DATIO39

21

A7

21

A13

21

A3

DATIO40

43

B7

43

B13

43

B3

N/A

23

SYS GND

23

SYS GND

23

SYS GND

1

CHASSIS

1

CHASSIS

1

CHASSIS

22, 44

N/C

22, 44

N/C

22, 44

N/C

Slot 4

Slot 5

Slot 6

Module Signal (Ref Only)

Front I/O J4 44-pin

Rear I/O P4

Rear I/O P3

Global (MB)

Front I/O J5 44-pin

Rear I/O P3

Rear I/O P2

Global (MB)

Front I/O J6 44-pin

Rear I/O P2

Rear I/O P1

Global (MB)

DATIO1

2

A1

2

E2

2

E8

DATIO2

24

B1

24

F2

24

F8

DATIO3

3

D1

3

B2

3

B8

DATIO4

25

E1

25

C2

25

C8

DATIO5

5

B2

5

D1

5

D7

DATIO6

27

C2

27

E1

27

E7

DATIO7

7

E2

7

A1

7

A7

DATIO8

29

F2

29

B1

29

B7

DATIO9

8

E16

8

E16

8

E6

DATIO10

30

F16

30

F16

30

F6

DATIO11

10

B16

10

B16

10

B6

DATIO12

32

C16

32

C16

32

C6

DATIO13

12

D15

12

D15

12

D5

DATIO14

34

E15

34

E15

34

E5

DATIO15

13

A15

13

A15

13

A5

DATIO16

35

B15

35

B15

35

B5

DATIO17

15

E14

15

E14

15

E4

DATIO18

37

F14

37

F14

37

F4

DATIO19

17

B14

17

B14

17

B4

DATIO20

39

C14

39

C14

39

C4

DATIO21

18

D13

18

D13

18

D3

DATIO22

40

E13

40

E13

40

E3

DATIO23

20

A13

20

A13

20

A3

DATIO24

42

B13

42

B13

42

B3

DATIO25

4

E12

4

E12

4

E2

DATIO26

26

F12

26

F12

26

F2

DATIO27

9

B12

9

B12

9

B2

DATIO28

31

C12

31

C12

31

C2

DATIO29

14

D11

14

D11

14

D1

DATIO30

36

E11

36

E11

36

E1

DATIO31

19

A11

19

A11

19

A1

DATIO32

41

B11

41

B11

41

B1

DATIO33

6

G1

6

E10

6

G1

DATIO34

28

G3

28

F10

28

G3

DATIO35

11

G5

11

B10

11

G5

DATIO36

33

G7

33

C10

33

G7

DATIO37

16

G9

16

D9

16

G9

DATIO38

38

G11

38

E9

38

G11

DATIO39

21

G13

21

A9

21

G13

DATIO40

43

G15

43

B9

43

G15

N/A

23

SYS GND

23

SYS GND

23

SYS GND

1

CHASSIS

1

CHASSIS

1

CHASSIS

22, 44

N/C

22, 44

N/C

22, 44

N/C

High Speed I/O Modules

Slot 5

Slot 6

Module Signal (Ref Only)

Front I/O J5 44-pin

Front I/O J5 44-pin

Rear I/O P3

Global (MB)

Front I/O J6 44-pin

Front I/O J6 44-pin

Rear I/O P1

Global (MB)

DATIO1

E10

ETH1 TP0P

A9

ETH1 TP0P

DATIO2

F10

ETH1 TP0N

B9

ETH1 TP0N

DATIO3

B10

ETH1 TP1P

D9

ETH1 TP1P

DATIO4

C10

ETH1 TP1N

E9

ETH1 TP1N

DATIO5

D9

ETH1 TP2P

B10

ETH1 TP2P

DATIO6

E9

ETH1 TP2N

C10

ETH1 TP2N

DATIO7

A9

ETH1 TP3P

E10

ETH1 TP3P

DATIO8

B9

ETH1 TP3N

F10

ETH1 TP3N

DATIO9

E8

ETH2 TP0P

A11

ETH2 TP0P

DATIO10

F8

ETH2 TP0N

B11

ETH2 TP0N

DATIO11

B8

ETH2 TP1P

D11

ETH2 TP1P

DATIO12

C8

ETH2 TP1N

E11

ETH2 TP1N

DATIO13

D7

ETH2 TP2P

B12

ETH2 TP2P

DATIO14

E7

ETH2 TP2N

C12

ETH2 TP2N

DATIO15

A7

ETH2 TP3P

E12

ETH2 TP3P

DATIO16

B7

ETH2 TP3N

F12

ETH2 TP3N

DATIO17

E6

ETH3 TP0P

A13

ETH3 TP0P

DATIO18

F6

ETH3 TP0N

B13

ETH3 TP0N

DATIO19

B6

ETH3 TP1P

D13

ETH3 TP1P

DATIO20

C6

ETH3 TP1N

E13

ETH3 TP1N

DATIO21

D5

ETH3 TP2P

B14

ETH3 TP2P

DATIO22

E5

ETH3 TP2N

C14

ETH3 TP2N

DATIO23

A5

ETH3 TP3P

E14

ETH3 TP3P

DATIO24

B5

ETH3 TP3N

F14

ETH3 TP3N

DATIO25

E4

ETH4 TP0P

A15

ETH4 TP0P

DATIO26

F4

ETH4 TP0N

B15

ETH4 TP0N

DATIO27

B4

ETH4 TP1P

D15

ETH4 TP1P

DATIO28

C4

ETH4 TP1N

E15

ETH4 TP1N

DATIO29

D3

ETH4 TP2P

B16

ETH4 TP2P

DATIO30

E3

ETH4 TP2N

C16

ETH4 TP2N

DATIO31

A3

ETH4 TP3P

E16

ETH4 TP3P

DATIO32

B3

ETH4 TP3N

F16

ETH4 TP3N

Connector Signal/Pin-Out Notes

NAI Synchro / Resolver Naming Convention

Signal

Resolver

Synchro

S1

SIN(-)

X

S2

COS(+)

Z

S3

SIN(+)

Y

S4

COS(-)

No connect

Additional Pinout Notes

1. Isolated Discrete Module (DT2)

For 'differential' A/D; “P” designation considered 'positive' input pin, “N” pin designation considered 'negative' input pin.

2. Discrete I/O Module (DT1)

All GND pins are common within the module, but, isolated from system/power GND. Each pin should be individually wired for optimal power current distribution.

3. TTL I/O Module (TL1)

I/O referenced to system power GND.

4. CMRP - A/D Module(s) (ADx)

The Common Mode Reference Point (CMRP) is an isolated reference connection for all the A/D channels. For expected high common mode voltage applications, it is recommended that the pin designated as CMRP be referenced (direct or resistor coupled) to the signal source GND reference (must have current path between CMRP and signal source generator) to minimize common mode voltage within the acceptable specification range. All channels within the module are independent but share a common CMRP, which is isolated from system/power GND.

MECHANICAL DETAILS

General - Outline

Note: The following mechanical outline detail examples are provided for reference only. Dimensions are in inches unless otherwise specified.

Conduction Cooled

67PPC2 Img21

Outline, General, Conduction Cooled

Convection Cooled

67PPC2 Img22

Outline, General, Convection Cooled, Front Panel I/O, 0.8" Pitch

SYNCHRO/RESOLVER AND LVDT/RVDT SIMULATION MODULE CODE TABLES

Select the Digital-to-Synchro (DSx), Digital-to-Resolver (DRx) or Digital-to-LVDT/RVDT (DLx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable the design to assure that the correct default band width is set at the factory. All Input and Reference voltages are auto ranging. Frequency/voltage band tolerances +/- 10%. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

  • Single Channel module pending availability (contact factory)

Module ID

Format

Channel(s)

Output Voltage VL-L (Vrms)

Reference Voltage (Vrms)

Frequency Range (Hz)

Power / CH maximum (VA)

Notes

DS1

SYN

1*

2 - 28

2 - 115

47 - 1 K

3

DR1

RSL

DL1

LVDT/RVDT

DS2

SYN

1*

2 - 28

2 - 115

1 K - 5 K

3

DR2

RSL

DL2

LVDT/RVDT

DS3

SYN

1*

2 - 28

2 - 115

5 K - 10 K

3

DR3

RSL

DL3

LVDT/RVDT

DS4

SYN

1*

2 - 28

2 - 115

10 K - 20 K

3

DR4

RSL

DL4

LVDT/RVDT

DS5

SYN

1*

28 - 90

2 - 115

47 - 1 K

3

DR5

RSL

DL5

LVDT/RVDT

DSX

SYN

1*

X

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

DRX

RSL

DLX

LVDT/RVDT

DSA

SYN

2

2 - 28

2 - 115

47 - 1 K

1.5

DRA

RSL

DLA

LVDT/RVDT

DSB

SYN

2

2 - 28

2 - 115

1 K - 5 K

1.5

DRB

RSL

DLB

LVDT/RVDT

DSC

SYN

2

2 - 28

2 - 115

5 K - 10 K

1.5

DRC

RSL

DLC

LVDT/RVDT

DSD

SYN

2

2 - 28

2 - 115

10 K - 20 K

1.5

DRD

RSL

DLD

LVDT/RVDT

DSE

SYN

2

28 - 90

2 - 115

47 - 1 K

2.2

DRE

RSL

DLE

LVDT/RVDT

DSY

SYN

2

Y

Y

Y

Y

Y = TBD; special configuration, requires special part number code designation, contact factory

DRY

RSL

DLY

LVDT/RVDT

DSJ

SYN

3

2 - 28

2 - 115

47 - 1 K

0.5

DRJ

RSL

DLJ

LVDT/RVDT

DSK

SYN

3

2 - 28

2 - 115

1 K - 5 K

0.5

DRK

RSL

DLK

LVDT/RVDT

DSL

SYN

3

2 - 28

2 - 115

5 K - 10 K

0.5

DRL

RSL

DLL

LVDT/RVDT

DSM

SYN

3

2 - 28

2 - 115

10 K - 20 K

0.5

DRM

RSL

DLM

LVDT/RVDT

DSN

SYN

3

28 - 90

2 - 115

47 - 1 K

0.5

DRN

RSL

DLN

LVDT/RVDT

DSZ

SYN

3

Z

Z

Z

Z

Z = TBD; special configuration, requires special part number code designation, contact factory

DRZ

RSL

DLZ

LVDT/RVDT

SYNCHRO/RESOLVER AND LVDT/RVDT MEASUREMENT MODULE CODE TABLES

SYN/RSL Four-Channel Measurement (Field Programmable SYN/RSL)

Select the Synchro/Resolver-to-Digital (SDx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable to the design to assure that the correct default band width is set at the factory. All Input and Reference voltages are auto ranging. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

Frequency/voltage band tolerances +/- 10%.

Module ID

Input Voltage V (Vrms)

Reference Voltage (Vrms)

Frequency Range (Hz)

Notes

SD1

2 - 28

2 - 115

47 - 1 K

SD2

2 - 28

2 - 115

1K - 5 K

SD3

2 - 28

2 - 115

5K - 10 K

SD4*

2 - 28

2 - 115

10K - 20 K

SD5

28 - 90

2 - 115

47 - 1 K

SDX*

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

*Consult factory for availability

LVDT/RVDT Four-Channel Measurement (Field Programmable 2, 3 or 4-Wire)

Select the LVDT/RVDT-to-Digital (LDx) module ID corresponding to the application operating parameters required from the following code table (where x = the specific module ID designator). Customer should indicate the actual frequency applicable to the design to assure that the correct default band width is set at the factory. All Input and Excitation voltages are auto ranging. For availability and ranges other than those listed contact the factory. Specifications may be subject to change.

Frequency/voltage band tolerances +/- 10%.

Module ID

Input Signal Voltage V (Vrms)

Excitation Voltage (Vrms)

Frequency Range (Hz)

Notes

LD1

2 - 28

2 - 115

47 - 1 K

LD2

2 - 28

2 - 115

1K - 5 K

LD3

2 - 28

2 - 115

5K - 10 K

LD4*

2 - 28

2 - 115

10K - 20 K

LD5

28 - 90

2 - 115

47 - 1 K

LDX*

X

X

X

X = TBD; special configuration, requires special part number code designation, contact factory

*Consult factory for availability

Revision History

Motherboard Manual - 67PPC2 Revision History

Revision

Revision Date

Description

C

2024-03-05

ECO C11199, transition to docbuilder format. Pg.7 & 9, updated from 'over 70' to 'over 100'. Pg.7, updated product image. Pg.7, updated processor clock speed from '1.5 GHz' to '1.8 GHz'. Pg.7, updated block diagram for revised processor clock speed. Pg.7, changed SATA II function slot example to '480 GB'. Pg.7, added Deos to OS support feature bullet. Pg.8-9, updated available module functions table. Pg.10, updated Introduction; added product overview section. Pg.12/17, updated +5VDC power spec. Pg.12, added +3.3V_Aux to 'Power (Motherboard)'. Pg.12, changed 'E' to 'H' in "Temperature, Operating". Pg.12, removed 'E' from "Temperature Cycling". Pg.15, updated OS support; removed BSP statement. Pg.22, updated TTL register names in table. Pg.25, changed TTL I/O Select to TTL Direction; corrected init value & data bits. Pg.25, updated TTL Data function & op settings. Pg.26, updated Loopback op settings. Pg.26, changed TTL Enable Interrupts to TTL IRQ Enable; updated function. Pg.26, changed TTL Set Edge/Level to TTL IRQ Polarity; updated function & op settings. Pg.27, changed TTL Interrupt Status to TTL IRQ Status. Pg.37, added Module Slot Addressing Ready. Pg.58, added Module Slot Addressing Ready offset. Pg.67-71, revised P0/P1/P2-P6 pinout tables to meet VPX Standard format. Pg.76-78, removed Module pinouts from manual. Pg.82, updated processor clock speed from 1.5 GHz to 1.8 GHz. Pg.82, removed Note 2 (N/A) from 'Notes' table. Pg.83, added Single Channel note. Pg.83, changed DSE/DRE/DLE Power/CH maximum (VA) value from '1.5' to '2.2'.

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients’ time-to-mission with a unique approach based on a Configurable Open Systems Architecture™ (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

Application Notes

Calibration and Repairs

Call Us

(631) 567-1100

Help Bot

X