Integrator Resources

The official home for NAI Support

Not sure where to start? Try Quick Start Guide or ask a question below!

Toggle Components with Visual Button
JavaScript Form Processing

IRIG Timecode Receiver Generator

INTRODUCTION

This module manual provides information about the North Atlantic Industries, Inc. (NAI) IRIG Timecode Receiver and Generator Function Module: RG1. This module is compatible with all latest generation NAI motherboards. The RG1 synchronizes to IRIG time codes and provides precise time in a memory register for the host SBC.

FEATURES

  • IRIG Receiver; Formats A, B, G

  • IRIG Generator; Formats A, B, G

  • Real-Time Clock (RTC)

  • Event Input Signal

  • Built-in Test and Functions

PRINCIPLE OF OPERATION

The RG1 Time Code receiver synchronizes to IRIG-A/B/G time codes and provides precise time in a memory register, for the host SBC. The IRIG output of the card can be used to synchronize other IRIG time code readers. Additionally, the RG1 includes a real-time clock (RTC) that may be used as a reference source for IRIG master applications.

The most common format is IRIG-B, but the module can also support IRIG-A and IRIG-G formats as well.

The IRIG format can be configured to the user’s needs. Available features include output IRIG data streams, IRIG format, control field contents (if supported by selected IRIG format), daylight savings time, offsets, and amplitude adjustment.

Measurement

The RG1 provides precise time in a memory register through a continuously running master timer. The time information is provided in year/day/hr/min/sec/nsec/seconds-since-midnight and is subject to the selected IRIG format. The master time is derived from either an external IRIG or onboard real-time clock (RTC) reference source. A free-running time can also be applied to the master timer when an IRIG reference source is not available.

Control/Configuration

The RG1 features several attributes that can be configured to affect the behavior of the master timer including:

  • IRIG protocol (B122, B123, B124, etc.)

  • IRIG format (Mode A, B, or G)

  • IRIG modulation (DCLS, AM ASK, or DC Manchester)

  • Reference source (IRIG, local RTC)

  • Free-running time (nominally for test)

  • Daylight Savings Time (DST)

  • Offset

  • 1PPS pulse width and period settings

Capture Event

The RG1 allows the user to set the capture event time of the specified IRIG channel. The time information is provided in hr/min/sec/tenths/millisec/sub-millisec and is subject to the selected IRIG protocol and format. The capture event registers also display the current state of event input and can be configured to detect rising or falling edges.

Real Time Clock (RTC)

The RG1 includes a real-time clock (RTC) that can be used as a reference source for IRIG master applications. This feature frees the system processor from the task of updating the master timer. The RTC provides several advantages over the 'set and forget' functionality of the master timer.

  • It provides a reference that allows for better long-term stability and reduces the potential for drift.

  • A stable time reference can be set in environments where network connectivity to a time source is unavailable.

  • Time will be preserved across power failures if a 'keep-alive' power source is provided. See DATIO19 (BKUP_PWR) in APPENDIX: PINOUT DETAILS.

The user must setup the RTC date and time before reading the master timer. Additional adjustments to the master time can be made through the daylight savings time (DST) and offset registers.

Built-In Test (BIT)/Diagnostic Capability

Automatic background BIT testing is provided. Each channel is checked for correct voltage, current and frequency. Any failure triggers an interrupt, if enabled, with the results available in the status registers. The testing is totally transparent to the user and has no effect on the operation of this module.

Status and Interrupts

The RG1 Function Module provides registers that indicate faults or events. Refer to 'Status and Interrupts Module Manual' for the Principle of Operation description.

Module Common Registers

The RG1 Function Module includes module common registers that provide access to module-level bare metal/FPGA revisions & compile times, unique serial number information, and temperature/voltage/current monitoring. Refer to “Module Common Registers Module Manual” for the detailed information.

REGISTER DESCRIPTIONS

The register descriptions provide the Register Name, Type, Data Range, Read or Write information, power on default initialized values, a description of the function and a data table where applicable.

Measurement Registers

Master Timer Registers

The following registers provide the Master Time in terms of Hours, Minutes, Seconds, Tenths of Seconds, Milliseconds, and Sub-millisecond. The master time is derived from either IRIG, onboard real-time clock (RTC), or Free Running time reference source.

Note
Reading the Master Time register that contains the Hours, Minutes, Seconds, and Tenths of Seconds will freeze the Master Time and Master Date registers until the next read.
Master Time (Hours, Minutes, Seconds, Tenths of Seconds)

Function: Contains the master time in hours, minutes, seconds, and tenths of seconds.

Type: unsigned binary word (32-bit) - components are in BCD format (HHMMSSTT)

Data Range: N/A

Read/Write: R

Initialized Value: Current time

Operational Settings: Reading this register will freeze the Master Time and Master Date registers until the next read.

Example: 0x1311 5214 - Hours is 13, Minutes is 11, Seconds is 52 and Tenths of Seconds is 14 (13:11:52:14).

Table 1. Master Time (Hour/Minute/Seconds/Tenths of Seconds in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

BCD Hours (Tens Digit)

BCD Hours (Ones Digit)

BCD Minutes (Tens Digit)

BCD Minutes (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

BCD Seconds (Tens Digit)

BCD Seconds (Ones Digit)

BCD Tenths of Sec (Tens Digit)

BCD Tenths of Sec (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Master Time (Milliseconds)

Function: Contains the master time’s millisecond component.

Type: unsigned binary word (32-bit)

Data Range: 0 - 1000 (0x0000 0000 - 0x0000 03E8)

Read/Write: R

Initialized Value: Current time

Operational Settings: The register is frozen upon a read of the Master Time (Hours, Minutes, Seconds, and Tenths of Seconds register).

Table 2. Master Time (Milliseconds)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

D

D

D

D

D

D

D

D

D

D

Master Time (Sub-Milliseconds)

Function: Contains the master time’s sub-millisecond component in steps of 8.33333 nsec.

Type: unsigned binary word (32-bit)

Data Range: 0 - 120,001 (0x0000 0000 - 0x0001 D4C1)

Read/Write: R

Initialized Value: Current time

Operational Settings: The register is frozen upon a read of the Master Time (Hours, Minutes, Seconds, and Tenths of Seconds register).

Table 3. Master Time (Sub-Milliseconds)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Master Time (Seconds Since Midnight)

Function: Contains the master time’s seconds since midnight.

Type: unsigned binary word (32-bit)

Data Range: 0 - 86399 (0x0000 0000 - 0x0001 517F)

Read/Write: R

Initialized Value: Current time

Operational Settings: The register is frozen upon a read of the Master Time (Hours, Minutes, Seconds, and Tenths of Seconds register).

Table 4. Master Time (Seconds Since Midnight)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Master Date

Function: Contains the master date. The master date is derived from either IRIG, onboard real-time clock (RTC), or Free Running time reference source. NOTE: the year component represents the year from 2000.

Type: unsigned binary word (32-bit) - components are in BCD format (0YYY0DDD)

Data Range: N/A

Read/Write: R

Initialized Value: Current time

Operational Settings: The register is frozen upon a read of the Master Time (Hours, Minutes, Seconds, and Tenths of Seconds register).

Example: 0x0000 0241 - Year = 0, Days in Year - 241.

Table 5. Master Date (Year and Days in Year in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Zero

BCD Year (Hundreds Digit)

BCD Year (Tens Digit)

BCD Year (Ones Digit)

0

0

0

0

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Zero

BCD Day in Year (Hundreds Digit)

BCD Day in Year (Tens Digit)

BCD Day in Year (Ones Digit)

0

0

0

0

D

D

D

D

D

D

D

D

D

D

D

D

Actual IRIG Time Registers

The following registers provide the Actual IRIG Time in terms of Hours, Minutes, Seconds, Tenths of Seconds, Milliseconds, and Sub-millisecond. The Actual IRIG time readings are valid only if IRIG messages are being received.

Note
Reading the IRIG Time register that contains the Hours, Minutes, Seconds, and Tenths of Seconds will freeze the IRIG Time and IRIG Date registers until the next read.
Actual IRIG Time (Hours, Minutes, Seconds, Tenths of Seconds)

Function: Contains the IRIG time in hours, minutes, seconds, and tenths of seconds.

Type: unsigned binary word (32-bit) - components are in BCD format (HHMMSSTT)

Data Range: N/A

Read/Write: R

Initialized Value: Current time

Operational Settings: Reading this register will freeze the IRIG Time and IRIG Date registers until the next read.

Example: 0x1311 5214 - Hours is 13, Minutes is 11, Seconds is 52 and Tenths of Seconds is 14 (13:11:52:14).

Table 6. Actual IRIG Time (Hour/Minute/Seconds/Tenths of Seconds in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

BCD Hours (Tens Digit)

BCD Hours (Ones Digit)

BCD Minutes (Tens Digit)

BCD Minutes (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

BCD Seconds (Tens Digit)

BCD Seconds (Ones Digit)

BCD Tenths of Sec (Tens Digit)

BCD Tenths of Sec (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Actual IRIG Time (Seconds Since Midnight)

Function: Contains the IRIG time’s seconds since midnight.

Type: unsigned binary word (32-bit)

Data Range: 0 - 86399 (0x0000 0000 - 0x0001 517F)

Read/Write: R

Initialized Value: Current time

Operational Settings: The register is frozen upon a read of the IRIG Time (Hours, Minutes, Seconds, and Tenths of Seconds register).

Table 7. Master Time (Seconds Since Midnight)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Actual IRIG Date

Function: Contains the IRIG date. The Actual IRIG date readings are valid only if IRIG messages are being received. The year component represents the year from 2000; The year counts years and cycles to the next year on January 1 of each year and will count to year 2099.

Type: unsigned binary word (32-bit) - components are in BCD format (0YYY0DDD)

Data Range: N/A

Read/Write: R

Initialized Value: Current time

*Operational Settings: The register is frozen upon a read of the Actual IRIG Time (Hours, Minutes, Seconds, and Tenths of Seconds register).

Example: 0x0000 0241 - Year = 0, Days in Year - 241.

Table 8. Actual IRIG Date (Year and Days in Year in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Zero

BCD Year (Hundreds Digit)

BCD Year (Tens Digit)

BCD Year (Ones Digit)

0

0

0

0

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Zero

BCD Day in Year (Hundreds Digit)

BCD Day in Year (Tens Digit)

BCD Day in Year (Ones Digit)

0

0

0

0

D

D

D

D

D

D

D

D

D

D

D

D

Errored Frame Count

Function: Contains the errored received frames, based on Reference pulse positions. The errored frame count will be incremented when the received IRIG signal does not match the expected format.

Type: unsigned binary word (32-bit)

Data Range: 0 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: (errors)

Operational Settings: Write any value to clear this register.

Control/Configuration Registers

IRIG Protocol

Function: Set the IRIG Protocol with configuration settings of the IRIG Format, IRIG Modulation, Carrier Frequency and Coded Expression.

Type: unsigned binary word (32-bit)

Data Range: 0 - 0x0000 FFFF

Read/Write: R/W

Initialized Value: 0x0000 2005

Operational Settings: Setting based on the following table.

D31..D16

Reserved

D15..D12

IRIG Format

1. Format A

2. Format B

7. Format G

D11..D8

IRIG Modulation

0. DCLS

1. AM ASK

2. DC Manchester

D7..D4

Carrier Frequency

0. No carrier

1. 100Hz

2. 1 kHz

3. 10 kHz

4. 100 kHz

5. 1 MHz

D3..D0

Code Expression

0. BCDTOY, CG, SBS

1. BCDTOY, CG

2. BCDTOY

3. BCDTOY, SBS

4. BCDTOY, BCDYEAR, CF, SBS

5. BCDTOY, BCDYEAR, CF

6. BCDTOY, BCDYEAR

7. BCDTOY, BCDYEAR, SBS

Table 9. IRIG Protocol

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

IRIG Format

IRIG Modulation

Carrier Frequency

Coded Expression

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

IRIG Year

Function: Contains the two-digit year for IRIG source. A value of 0xFF is set for sources that provide no year information (e.g. B122).

Type: unsigned binary word (32-bit)

Data Range: 0x00 - 0xFF

Read/Write: R/W

Initialized Value: 0xFF

Operational Settings: Specifies the two-digit year for IRIG source. For IRIG sources that have no year, this will contain the value 0xFF.

Table 10. IRIG Year

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

D

D

D

D

D

D

D

D

Reference Source Registers

Reference Source

Function: Contains reference source to be used by the master timer.

Type: unsigned binary word (32-bit)

Data Range: See table

Read/Write: R/W

Initialized Value: 0

Operational Settings: Setting based on the following table:

D31..D3

Reserved

D2…​D0

Reference Source

0. IRIG requested

5. RTC requested (can only be requested, never preferred)

7. Free-running or No Reference

Table 11. Reference Source

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

Actual Reference Source

Function: Contains the actual reference source to be used by the master time.

Type: unsigned binary word (32-bit)

Data Range: See table.

Read/Write: R

Initialized Value: 0

Operational Settings: Setting based on the following table:

D31..D3

Reserved

D2…​D0

Actual Reference Source

0. IRIG

3. RTC (RG1 only)

5. Has never been set

6. Losing sync (coasting, possibly still okay). Coasting means that the IRIG time is deviating from the external time source.

7. Master timer can use the Free-Running time if Free-Running Launch is set. Also means No Reference if the IRIG is not incrementing (coasting, too long).

Table 12. Actual Reference Source

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

Free-Running Time Registers

Free-Running Time (Hours, Minutes, Seconds, Tenths of Seconds)

Function: Contains the free-running time in hours, minutes, seconds, and tenths of seconds.

Type: unsigned binary word (32-bit) - components are in BCD format (HHMMSSTT)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0

Operational Settings: The free-running time will only be loaded to the master timer when the "Launch Free-Running Set" register is written to and the "Actual Reference Source" register has a value of greater than 4 which implies "has never been set", "coasting, possibly still okay", or "coasting, for too long".

Table 13. Free Running Time (Hour/Minute/Seconds/Tenths of Seconds in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

BCD Hours (Tens Digit)

BCD Hours (Ones Digit)

BCD Minutes (Tens Digit)

BCD Minutes (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

BCD Seconds (Tens Digit)

BCD Seconds (Ones Digit)

BCD Tenths of Sec (Tens Digit)

BCD Tenths of Sec (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Free-Running Date

Function: Contains the free running date to be loaded to the master timer.

Type: unsigned binary word (32-bit) - components are in BCD format (0YYY0DDD)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0

Operational Settings: The free-running date will only be loaded to the master timer when the "Launch Free-Running Set" register is written to and the "Actual Reference Source" register has a value of greater than 4 which implies "has never been set", "coasting, possibly still okay", or "coasting, for too long".

Table 14. Free Running Date (Year and Days in Year in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Zero

BCD Year (Hundreds Digit)

BCD Year (Tens Digit)

BCD Year (Ones Digit)

0

0

0

0

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Zero

BCD Day in Year (Hundreds Digit)

BCD Day in Year (Tens Digit)

BCD Day in Year (Ones Digit)

0

0

0

0

D

D

D

D

D

D

D

D

D

D

D

D

Free-Running Straight Binary Seconds (SBS)

Function: Contains the free-running straight binary seconds to be loaded to the master timer.

Type: unsigned binary word (32-bit)

Data Range: 0 - 86400 (0x0000 0000 - 0x0001 5180)

Read/Write: R/W

Initialized Value: 0

Operational Settings: The free-running SBS will only be loaded to the master timer when the "Launch Free-Running Set" register is written to and the "Actual Reference Source" register has a value of greater than 4 which implies "has never been set", "coasting, possibly still okay", or "coasting, for too long".

Table 15. Set Free Running SBS

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Launch Free-Running Set

Function: Starts the free-running system clock

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: W

Initialized Value: 0

Operational Settings: Write any value to load the above registers to the master timer. This function only works when the Actual Reference Source (0x10e4) is greater than 4. Write only; read will always return 0xDEADDEAD.

Daylight Savings Time (DST) Registers

DST Status

Function: Contains setting whether Daylight Savings Time (DST) is in effect.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: R

Initialized Value: 0

Operational Settings: Reading back a 1 means DST is enabled; reading back a 0 means DST is disabled.

Table 16. DST Status

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

DST Offset

Function: Daylight Saving Time hours and minutes adjustment to be added to reference time. Value of zero to indicate to disable DST.

Type: unsigned binary word (32-bit) - components are in BCD format (00000HMM)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0

Operational Settings: BCD adjustment (in hmm) of hours/minutes to be added to reference time (0x0000 0100 in the USA). Set to 0 to disable DST.

DST Start

Function: Contains the starting value for Daylight Savings Time (DST)

Type: unsigned binary word (32-bit)

Data Range: TBD

Read/Write: R/W

Initialized Value: 0302 0200 (standard USA start)

Operational Settings: Setting based on the following table:

D31..D24

Month (1-12 in BCD)

D23..D20

Day of week

0. Sunday

1. Monday

2. Tuesday

3. Wednesday

4. Thursday

5. Friday

6. Saturday

D19..D16

Week number (1 to 5)

D15..D8

Hour in BCD

D7..D0

Minute in BCD

Table 17. DST Start

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

BCD Month (Tens Digit)

BCD Month (Ones Digit)

Day of week

Week Number

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

BCD Hours (Tens Digit)

BCD Hours (Ones Digit)

BCD Minutes (Tens Digit)

BCD Minutes (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DST End

Function: Contains the ending value for Daylight Savings Time (DST)

Type: unsigned binary word (32-bit)

Data Range: See table

Read/Write: R/W

Initialized Value: 1101 0200

Operational Settings: TBD

D31..D24

Month (1-12 in BCD)

D23..D20

Day of week

0. Sunday

1. Monday

2. Tuesday

3. Wednesday

4. Thursday

5. Friday

6. Saturday

D19..D16

Week number (1 to 5)

D15..D8

Hour in BCD

D7..D0

Minute in BCD

Table 18. DST End

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

BCD Month (Tens Digit)

BCD Month (Ones Digit)

Day of week

Week Number

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

BCD Hours (Tens Digit)

BCD Hours (Ones Digit)

BCD Minutes (Tens Digit)

BCD Minutes (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

DCLS Propagation Offset

Function: Contains the propagation offset for IRIG when set to DCLS modulation

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0x27

Operational Settings: Number of (8.333 ns) ticks to be added to/subtracted from received reference pulse time (+ = set in the future, - = set in the past)

Mode A Propagation Offset

Function: Contains the propagation offset for IRIG AM MODE A. Number of ticks (8.333ns) to be added or subtracted. Range = +/- 5mS.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0x0000 18D8

Operational Settings: Number of (8.333 ns) ticks to be added to/subtracted from received reference pulse time (+ = set in the future, - = set in the past)

Mode B Propagation Offset

Function: Contains the propagation offset for IRIG AM MODE B. Number of ticks (8.333ns) to be added or subtracted. Range = ± 5mS.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0x0000 F618

Operational Settings: Number of (8.333 ns) ticks to be added to/subtracted from received reference pulse time (+ = set in the future, - = set in the past)

Mode G Propagation Offset

Function: Contains the propagation offset for IRIG AM MODE G. Number of ticks (8.333ns) to be added or subtracted. Range = ± 5mS.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0x0000 0318

Operational Settings: Number of (8.333 ns) ticks to be added to/subtracted from received reference pulse time (+ = set in the future, - = set in the past)

Time Zone

Function: Contains the time zone offset for IRIG when set to DCLS modulation

Type: unsigned binary word (32-bit)

Data Range: ±1439

Read/Write: R/W

Initialized Value: 0

Operational Settings: Number of minutes to be added to/subtracted from received reference time to accommodate time zone differences (±1439)

IRIG Input Termination/Signal Level Registers

IRIG Input Format

Function: Contains the IRIG input format.

Type: unsigned binary word (32-bit)

Data Range: See table

Read/Write: R/W

Initialized Value: 0x0000 0003

Operational Settings: Setting based on the following table:

D31..D3

Reserved

D2

Analog termination

0. Disable

1. Enable

D1

Digital Input

0. RS232

1. RS485

D0

Digital termination

0. Disable

1. Enable

Table 19. IRIG Input Format

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

Miscellaneous Signal Levels

Function: Contains miscellaneous settings for signal level.

Type: unsigned binary word (32-bit)

Data Range: See table

Read/Write: R/W

Initialized Value: 0x0000 0003

Operational Settings: Setting based on the following table

D31..D8

Reserved

D7

Serial port 1 termination

0. Not terminated

1. Terminated

D6

Serial port 1 interface

0. RS232

1. RS485

D5

Reserved

D4

Serial port 2 termination

0. Not terminated

1. Terminated

D3

Serial port 2 interface

0. RS232

1. RS485

D2

Reserved

D1

1PPS out, Event in

0. RS232

1. RS485

D0

IRIG digital out

0. RS232

1. RS485

Table 20. Miscellaneous Signal Levels

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

D

D

D

D

D

D

D

D

Advanced Configuration Registers

AM Output Gain

Function: Contains the AM IRIG output gain level

Type: unsigned binary word (32-bit)

Data Range: 0-255 (0x0000 - 0x00FF)

Read/Write: R/W

Initialized Value: 0x80

Operational Settings: The IRIG Gain Control for the AM IRIG Output Level.

Drift Threshold

Function: Contains the IRIG drift threshold.

Type: unsigned binary word (32-bit)

Data Range: 0-65535 (0x0000 0000 - 0x0000 FFFF)

Read/Write: R/W

Initialized Value: 0x1E

Operational Settings: The IRIG drift threshold is the number of seconds before an 'excessive drift' interrupt is triggered. The time is measured by comparing the master time with the actual IRIG source. The countdown starts when master time is not locked on to a reference. When the count reaches zero and the master time remains not locked on to a reference, the actual Reference source register (0x10E4) will be set to 7 (coasting for too long) and the status change in reference source (D15) in General Status register will be set.

Table 21. Drift Threshold

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Control Bits to Send

Function: Contains the IRIG user bits to send.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: The IRIG user bits to send are loaded at the beginning of an IRIG Tx frame.

Control Bits Received

Function: Contains the IRIG user bits received.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: This applies to both analog and digital IRIG. Not all IRIG protocol supports user bits (CF) field.

1PPS Pulse Width

Function: Contains the 1PPS Pulse Width for the specified IRIG channel in units of microseconds. The default is 10 msec and its base unit is 1 uS.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 10,000 (0x0000 2710)

Operational Settings: The 1PPS pulse is generated by the master timer. Output only.

Periodic Interrupt Period

Function: Contains the periodic interrupt period of 1PPS signal. The default is 1 second and its base unit is 1 uS.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 1,000,000 (0x000F 4240)

Operational Settings: The 1PPS pulse is generated by the master timer. Output only.

Capture Event Registers

Capture Event Time (Hours, Minutes, Seconds, Tenths of Seconds)

Function: Contains the capture event time in hours, minutes, seconds, and tenths of seconds.

Type: unsigned binary word (32-bit) - components are in BCD format (HHMMSSTT)

Data Range: N/A

Read/Write: R/W

Initialized Value: last edge

Operational Settings: Write any value to re-arm the capture. NOTE: B122 protocol format: HHMMSS00

Table 22. Capture Event Time (Hour/Minute/Seconds/Tenths of Seconds in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

BCD Hours (Tens Digit)

BCD Hours (Ones Digit)

BCD Minutes (Tens Digit)

BCD Minutes (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

BCD Seconds (Tens Digit)

BCD Seconds (Ones Digit)

BCD Tenths of Sec (Tens Digit)

BCD Tenths of Sec (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Capture Event Time (Milliseconds)

Function: Contains the capture event time’s millisecond component.

Type: unsigned binary word (32-bit)

Data Range: 0 - 1000 (0x0000 0000 - 0x0000 03E8)

Read/Write: R

Initialized Value: 0

Operational Settings: This is the time of last edge of EVENT input in milliseconds.

Table 23. Capture Event Time (Milliseconds)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

D

D

D

D

D

D

D

D

D

D

Capture Event Time (Sub-Milliseconds)

Function: Contains the capture event time’s sub-millisecond component in steps of 8.33333 nsec.

Type: unsigned binary word (32-bit)

Data Range: 0 - 120,001 (0x0000 0000 - 0x0001 D4C1)

Read/Write: R

Initialized Value: 0

Operational Settings: This is the time of last edge of EVENT input in sub-milliseconds.

Table 24. Capture Event Time (Sub-Milliseconds)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Capture Event Edge

Function: Contains the Capture Event Rising (0) or Falling (1) Edge Detect type. Also displays the current state of EVENT input.

Type: unsigned binary word (32-bit)

Data Range: See table

Read/Write: R/W

Initialized Value: 0

Operational Settings: Set bit to 0 for rising edge detect, or to 1 for falling edge detect.

D31

Current State of event input

D30..D1

Reserved

D0

Edge detect

0. Rising edge

1. Falling edge

Table 25. Capture Event Edge

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Real Time Clock (RTC) Registers

RTC Time

Function: Contains the RTC time in hours, minutes, and seconds.

Type: unsigned binary word (32-bit) - components are in BCD format (00HHMMSS)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write this first before writing to other Real Time Clock setting. Once the RTC Time is set, write to the RTC Control register.

Table 26. Real Time Clock Time (Hour/Minute/Seconds/Tenths of Seconds in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Zero

Zero

BCD Hour (Tens Digit)

BCD Hour (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

BCD Seconds (Tens Digit)

BCD Seconds (Ones Digit)

BCD Tenths of Sec (Tens Digit)

BCD Tenths of Sec (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

RTC Date

Function: Sets the RTC date in days, months, and years.

Type: unsigned binary word (32-bit) - components are in BCD format (00DDMMYY)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0

Operational Settings: Write this first before writing to other Real Date Clock setting. Once the RTC Date is set, write to the RTC Control register.

Table 27. RTC Date (Days, Month and Year in BCD format)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Zero

Zero

BCD Hour (Tens Digit)

BCD Hour (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

BCD Month (Tens Digit)

BCD Month (Ones Digit)

BCD Year (Tens Digit)

BCD Year (Ones Digit)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

RTC Control

Function: Contains the RTC Control.

Type: unsigned binary word (32-bit)

Data Range: See table

Read/Write: R/W

Initialized Value: 0

Operational Settings: Settings based on the following table:

D31

State of 1 Hz pin

D30..D1

Reserved

D0

Ready to set RTC Time/Date (write to this bit after bit goes high to set)

Table 28. RTC Control

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

RTC Propagation Offset

Function: Contains the propagation offset for the RTC

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 - 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0x12

Operational Settings: Number of (8.333 ns) ticks to be added to/subtracted from received reference pulse time (+ = set in the future, - = set in the past).

RTC Time Zone Offset

Function: Contains the time zone offset for the RTC

Type: unsigned binary word (32-bit)

Data Range: ±1439

Read/Write: R/W

Initialized Value: 0

Operational Settings: Number of minutes to be added to/subtracted from received reference time to accommodate time zone differences (±1439).

Module Common Registers

Refer to “Module Common Registers Module Manual” for the register descriptions.

Status and Interrupt Registers

The RG1 Module provides status registers for BIT and General Interrupts.

BIT Status

There are four registers associated with the BIT Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. The BIT Status register will indicate an error when there is a software fault.

D31..D2

Reserved

D1

(software fault)

D0

Reserved

Table 29. BIT Status

BIT Dynamic Status

BIT Latched Status

BIT Interrupt Enable

BIT Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

0

Function: Sets the corresponding bit associated with the channel’s BIT error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Note
BIT Status is part of background testing, and the status register may be checked or polled at any given time.

General Interrupts Status

There are four registers associated with the General Interrupts Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. The General Interrupts Status register will indicate an error when there is a change in an RG1 status.

D31

Test interrupt - can be written high or low

D30

Did a DST adjust

D29

Programmable-duration user interrupt (ref: 0x1164)

D28..D21

Reserved

D20

Event detected

D19..D16

Reserved

D15

Change in reference source

D14..D8

Reserved

D7

Control bits received

D6

Received control bits changed

D5

Interrupt on 1PPS output going high

D4

IRIG reference pulse received

D3..D2

Reserved

D1

Receiving IRIG reference

D0

IRIG reference loss

Table 30. General Interrupt Status

General Interrupts Dynamic Status

General Interrupts Latched Status

General Interrupts Interrupt Enable

General Interrupts Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

D

D

D

0

0

0

0

0

0

0

0

D

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

D

0

0

0

0

0

0

0

D

D

D

D

0

0

D

D

Function: Sets the corresponding bit associated with the channel’s General Interrupt status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value:

Dynamic Status (0x810): 0x0010 0002

Latched Status (0x814): 0x2010 80B3

Interrupt Enable (0x818): 0x0000 0000

Edge/Level Interrupt (0x81C): 0x0000 0000

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Note
The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).

Interrupt Vector

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Sets where to direct the interrupt.

Type: unsigned binary word (32-bit)

Data Range: See table Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME

1

Direct Interrupt to ARM Processor (via SerDes) (Custom App on ARM or NAI Ethernet Listener App)

2

Direct Interrupt to PCIe Bus

5

Direct Interrupt to cPCI Bus

6

FUNCTION REGISTER MAP

Key:

Bold Italic = Configuration/Control

Bold Underline = Measurement/Status

Measurement Registers

Master Time/Date Registers

0x1000

Master Time (Hours, Minutes, Seconds, Tenths of Second)

R

0x1008

Master Time (Milliseconds)

R

0x1010

Master Time (Sub-Milliseconds)

R

0x1014

Master Time (Seconds Since Midnight)

R

0x1004

Master Date

R

Actual IRIG Time Registers

0x1280

Actual IRIG Time (Hours, Minutes, Seconds, Tenths of Second)

R

0x1290

Actual IRIG Time (Seconds Since Midnight)

R

0x1284

Actual IRIG Date

R

0x12F8

Errored Frame Count

R/W

Control/Configuration Registers

IRIG Protocol/Year

0x1100

IRIG Protocol

R/W

0x106C

IRIG Year

R/W

Reference Source Registers

0x10E0

Reference Source

R/W

0x10E4

Actual Reference Source

R

Free-Running Time Registers

0x1020

Free-Running Time

R/W

0x1024

Free-Running Date

R/W

0x1028

Free-Running SBS

R/W

0x102C

Launch Free-Running Set

R/W

Daylight Savings Time (DST) Registers

0x1030

DST Status

R

0x1140

DST Offset

R/W

0x1144

DST Start

R/W

0x1148

DST End

R/W

0x1120

DCLS Propagation Offset

R/W

0x1154

Mode A Propagation Offset

R/W

0x1158

Mode B Propagation Offset

R/W

0x115C

Mode G Propagation Offset

R/W

0x1124

Time Zone

R/W

IRIG Input Termination/Signal Level Registers

0x1168

IRIG Input Format

R/W

0x1114

Miscellaneous Signal Levels

R/W

Advanced Configuration Registers

0x1080

AM Output Gain

R/W

0x10B4

Drift Threshold

R/W

0x1090

Control Bits to Send

R/W

0x1094

Control Bits Received

R

0x1160

1PPS Pulse Width

R/W

0x1164

Periodic Interrupt Period

R/W

Capture Event Registers

0x1070

Capture Event (Hours, Minutes, Seconds, Tenths of Second)

R/W

0x1074

Capture Event Time (Millisecond)

R

0x1078

Capture Event Time (Sub- Millisecond)

R

0x107C

Capture Event Edge

R/W

Real Time Clock (RTC) Registers

0x1380

RTC Time (Hours, Minutes, Seconds, Tenths of Second)

R/W

0x1384

RTC Date

R/W

0x1388

RTC Control

R/W

0x1130

RTC Propagation Offset

R/W

0x1134

RTC Time Zone Offset

R/W

Status Registers

BIT Status

0x0800

Dynamic Status

R

0x0804

Latched Status*

R/W

0x0808

Interrupt Enable

R/W

0x080C

Set Edge/Level Interrupt

R/W

General Status Registers

0x0810

Dynamic Status

R

0x0814

Latched Status*

R/W

0x0818

Interrupt Enable

R/W

0x081C

Set Edge/Level Interrupt

R/W

Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are located on the Motherboard Memory Space and do not require any Module Address Offsets. These registers are accessed using the absolute addresses listed in the table below.

0x0500

Module 1 Interrupt Vector 1 - BIT

R/W

0x0504

Module 1 Interrupt Vector 2 - General

R/W

0x0508 to 0x057C

Module 1 Interrupt Vector 3 - 32 - Reserved

R/W

0x0600

Module 1 Interrupt Steering 1 - BIT

R/W

0x0604

Module 1 Interrupt Steering 2 - General

R/W

0x0608 to 0x067C

Module 1 Interrupt Steering 3 - 32 - Reserved

R/W

0x0700

Module 2 Interrupt Vector 1 - BIT

R/W

0x0704

Module 2 Interrupt Vector 2 - General

R/W

0x0708 to 0x077C

Module 2 Interrupt Vector 3 - 32 - Reserved

R/W

0x0800

Module 2 Interrupt Steering 1 - BIT

R/W

0x0804

Module 2 Interrupt Steering 2 - General

R/W

0x0808 to 0x087C

Module 2 Interrupt Steering 3 - 32 - Reserved

R/W

0x0900

Module 3 Interrupt Vector 1 - BIT

R/W

0x0904

Module 3 Interrupt Vector 2 - General

R/W

0x0908 to 0x097C

Module 3 Interrupt Vector 3 - 32 - Reserved

R/W

0x0A00

Module 3 Interrupt Steering 1 - BIT

R/W

0x0A04

Module 3 Interrupt Steering 2 - General

R/W

0x0A08 to 0x0A7C

Module 3 Interrupt Steering 3 - 32 - Reserved

R/W

0x0B00

Module 4 Interrupt Vector 1 - BIT

R/W

0x0B04

Module 4 Interrupt Vector 2 - General

R/W

0x0B08 to 0x0B7C

Module 4 Interrupt Vector 3 - 32 - Reserved

R/W

0x0C00

Module 4 Interrupt Steering 1 - BIT

R/W

0x0C04

Module 4 Interrupt Steering 2 - General

R/W

0x0C08 to 0x0C7C

Module 4 Interrupt Steering 3 - 32 - Reserved

R/W

0x0D00

Module 5 Interrupt Vector 1 - BIT

R/W

0x0D04

Module 5 Interrupt Vector 2 - General

R/W

0x0D08 to 0x0D7C

Module 5 Interrupt Vector 3 - 32 - Reserved

R/W

0x0E00

Module 5 Interrupt Steering 1 - BIT

R/W

0x0E04

Module 5 Interrupt Steering 2 - General

R/W

0x0E08 to 0x0E7C

Module 5 Interrupt Steering 3 - 32 - Reserved

R/W

0x0F00

Module 6 Interrupt Vector 1 - BIT

R/W

0x0F04

Module 6 Interrupt Vector 2 - General

R/W

0x0F08 to 0x0F7C

Module 6 Interrupt Vector 3 - 32 - Reserved

R/W

0x1000

Module 6 Interrupt Steering 1 - BIT

R/W

0x1004

Module 6 Interrupt Steering 2 - General

R/W

0x1008 to 0x107C

Module 6 Interrupt Steering 3 - 32 - Reserved

R/W

APPENDIX: PIN-OUT DETAILS

Pin-out details (for reference) are shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Motherboard Operational Manuals

Module Signal (Ref Only)

IRIG (RG1)*

DATIO1

DATIO2

DATIO3

DATIO4

DATIO5

DATIO6

DATIO7

DATIO8

DATIO9

DATIO10

DATIO11

DATIO12

DATIO13

DATIO14

1PPS_OUTp / 1PPS_OUT

DATIO15

IRIG_DI_INn

DATIO16

IRIG_DI_INp / IRIG_DI_IN

DATIO17

EVENT_INn

DATIO18

EVENT_INp / EVENT_IN

DATIO19

BKUP_PWR**

DATIO20

ISO_GND

DATIO21

IRIG_DI_OUTn

DATIO22

IRIG_DI_OUTp / IRIG_DI_OUT

DATIO23

IRIG_AN_IN

DATIO24

IRIG_AN_IRET

DATIO25

DATIO26

DATIO27

10_MHZn_OUT

DATIO28

10_MHZp_OUT

DATIO29

GPIO0_INn

DATIO30

GPIO0_INp / GPIO0_IN

DATIO31

IRIG_AN_OUT

DATIO32

IRIG_AN_ORET

DATIO33

DATIO34

DATIO35

DATIO36

DATIO37

DATIO38

DATIO39

DATIO40

N/A

NOTES:

*RS-485 requires connections to both positive (p) and negative (n) signals. RS-232 requires connection to just the positive (p) signal. ISO_GND: signal return for the IRIG DCLS signal input (Digital IRIG-In Line Receiver) in RS-232 interface mode.

**The RTC backup voltage can range from 1.8 to 5.5V.

STATUS AND INTERRUPTS

Status registers indicate the detection of faults or events. The status registers can be channel bit-mapped or event bit-mapped. An example of a channel bit-mapped register is the BIT status register, and an example of an event bit-mapped register is the FIFO status register.

For those status registers that allow interrupts to be generated upon the detection of the fault or the event, there are four registers associated with each status: Dynamic, Latched, Interrupt Enabled, and Set Edge/Level Interrupt.

Dynamic Status: The Dynamic Status register indicates the current condition of the fault or the event. If the fault or the event is momentary, the contents in this register will be clear when the fault or the event goes away. The Dynamic Status register can be polled, however, if the fault or the event is sporadic, it is possible for the indication of the fault or the event to be missed.

Latched Status: The Latched Status register indicates whether the fault or the event has occurred and keeps the state until it is cleared by the user. Reading the Latched Status register is a better alternative to polling the Dynamic Status register because the contents of this register will not clear until the user commands to clear the specific bit(s) associated with the fault or the event in the Latched Status register. Once the status register has been read, the act of writing a 1 back to the applicable status register to any specific bit (channel/event) location will “clear” the bit (set the bit to 0). When clearing the channel/event bits, it is strongly recommended to write back the same bit pattern as read from the Latched Status register. For example, if the channel bit-mapped Latched Status register contains the value 0x0000 0005, which indicates fault/event detection on channel 1 and 3, write the value 0x0000 0005 to the Latched Status register to clear the fault/event status for channel 1 and 3. Writing a “1” to other channels that are not set (example 0x0000 000F) may result in incorrectly “clearing” incoming faults/events for those channels (example, channel 2 and 4).

Interrupt Enable: If interrupts are preferred upon the detection of a fault or an event, enable the specific channel/event interrupt in the Interrupt Enable register. The bits in Interrupt Enable register map to the same bits in the Latched Status register. When a fault or event occurs, an interrupt will be fired. Subsequent interrupts will not trigger until the application acknowledges the fired interrupt by clearing the associated channel/event bit in the Latched Status register. If the interruptible condition is still persistent after clearing the bit, this may retrigger the interrupt depending on the Edge/Level setting.

Set Edge/Level Interrupt: When interrupts are enabled, the condition on retriggering the interrupt after the Latch Register is “cleared” can be specified as “edge” triggered or “level” triggered. Note, the Edge/Level Trigger also affects how the Latched Register value is adjusted after it is “cleared” (see below).

  • Edge triggered: An interrupt will be retriggered when the Latched Status register change from low (0) to high (1) state. Uses for edgetriggered interrupts would include transition detections (Low-to-High transitions, High-to-Low transitions) or fault detections. After “clearing” an interrupt, another interrupt will not occur until the next transition or the re-occurrence of the fault again.

  • Level triggered: An interrupt will be generated when the Latched Status register remains at the high (1) state. Level-triggered interrupts are used to indicate that something needs attention.

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed with a unique number/identifier defined by the user such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Interrupt Trigger Types

In most applications, limiting the number of interrupts generated is preferred as interrupts are costly, thus choosing the correct Edge/Level interrupt trigger to use is important.

Example 1: Fault detection

This example illustrates interrupt considerations when detecting a fault like an “open” on a line. When an “open” is detected, the system will receive an interrupt. If the “open” on the line is persistent and the trigger is set to “edge”, upon “clearing” the interrupt, the system will not regenerate another interrupt. If, instead, the trigger is set to “level”, upon “clearing” the interrupt, the system will re-generate another interrupt. Thus, in this case, it will be better to set the trigger type to “edge”.

Example 2: Threshold detection

This example illustrates interrupt considerations when detecting an event like reaching or exceeding the “high watermark” threshold value. In a communication device, when the number of elements received in the FIFO reaches the high-watermark threshold, an interrupt will be generated. Normally, the application would read the count of the number of elements in the FIFO and read this number of elements from the FIFO. After reading the FIFO data, the application would “clear” the interrupt. If the trigger type is set to “edge”, another interrupt will be generated only if the number of elements in FIFO goes below the “high watermark” after the “clearing” the interrupt and then fills up to reach the “high watermark” threshold value. Since receiving communication data is inherently asynchronous, it is possible that data can continue to fill the FIFO as the application is pulling data off the FIFO. If, at the time the interrupt is “cleared”, the number of elements in the FIFO is at or above the “high watermark”, no interrupts will be generated. In this case, it will be better to set the trigger type to “level”, as the purpose here is to make sure that the FIFO is serviced when the number of elements exceeds the high watermark threshold value. Thus, upon “clearing” the interrupt, if the number of elements in the FIFO is at or above the “high watermark” threshold value, another interrupt will be generated indicating that the FIFO needs to be serviced.

Dynamic and Latched Status Registers Examples

The examples in this section illustrate the differences in behavior of the Dynamic Status and Latched Status registers as well as the differences in behavior of Edge/Level Trigger when the Latched Status register is cleared.

Status and Interrupts Fig1

Figure 1. Example of Module’s Channel-Mapped Dynamic and Latched Status States

No Clearing of Latched Status

Clearing of Latched Status (Edge-Triggered)

Clearing of Latched Status (Level-Triggered)

Time

Dynamic Status

Latched Status

Action

Latched Status

Action

Latched

T0

0x0

0x0

Read Latched Register

0x0

Read Latched Register

0x0

T1

0x1

0x1

Read Latched Register

0x1

0x1

Write 0x1 to Latched Register

Write 0x1 to Latched Register

0x0

0x1

T2

0x0

0x1

Read Latched Register

0x0

Read Latched Register

0x1

Write 0x1 to Latched Register

0x0

T3

0x2

0x3

Read Latched Register

0x2

Read Latched Register

0x2

Write 0x2 to Latched Register

Write 0x2 to Latched Register

0x0

0x2

T4

0x2

0x3

Read Latched Register

0x1

Read Latched Register

0x3

Write 0x1 to Latched Register

Write 0x3 to Latched Register

0x0

0x2

T5

0xC

0xF

Read Latched Register

0xC

Read Latched Register

0xE

Write 0xC to Latched Register

Write 0xE to Latched Register

0x0

0xC

T6

0xC

0xF

Read Latched Register

0x0

Read Latched

0xC

Write 0xC to Latched Register

0xC

T7

0x4

0xF

Read Latched Register

0x0

Read Latched Register

0xC

Write 0xC to Latched Register

0x4

T8

0x4

0xF

Read Latched Register

0x0

Read Latched Register

0x4

Interrupt Examples

The examples in this section illustrate the interrupt behavior with Edge/Level Trigger.

Status and Interrupts Fig2

Figure 2. Illustration of Latched Status State for Module with 4-Channels with Interrupt Enabled

Time

Latched Status (Edge-Triggered – Clear Multi-Channel)

Latched Status (Edge-Triggered – Clear Single Channel)

Latched Status (Level-Triggered – Clear Multi-Channel)

Action

Latched

Action

Latched

Action

Latched

T1 (Int 1)

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Write 0x1 to Latched Register

Write 0x1 to Latched Register

Write 0x1 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear until T2.

0x1

T3 (Int 2)

Interrupt Generated Read Latched Registers

0x2

Interrupt Generated Read Latched Registers

0x2

Interrupt Generated Read Latched Registers

0x2

Write 0x2 to Latched Register

Write 0x2 to Latched Register

Write 0x2 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.

0x2

T4 (Int 3)

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x3

Write 0x1 to Latched Register

Write 0x1 to Latched Register

Write 0x3 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x3 is reported in Latched Register until T5.

0x3

Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.

0x2

T6 (Int 4)

Interrupt Generated Read Latched Registers

0xC

Interrupt Generated Read Latched Registers

0xC

Interrupt Generated Read Latched Registers

0xE

Write 0xC to Latched Register

Write 0x4 to Latched Register

Write 0xE to Latched Register

0x0

Interrupt re-triggers Write 0x8 to Latched Register

0x8

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xE is reported in Latched Register until T7.

0xE

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xC is reported in Latched Register until T8.

0xC

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x4 is reported in Latched Register always.

0x4

MODULE COMMON REGISTERS

The registers described in this document are common to all NAI Generation 5 modules.

Module Information Registers

The registers in this section provide module information such as firmware revisions, capabilities and unique serial number information.

FPGA Version Registers

The FPGA firmware version registers include registers that contain the Revision, Compile Timestamp, SerDes Revision, Template Revision and Zynq Block Revision information.

FPGA Revision

Function: FPGA firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 31. FPGA Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Compile Timestamp

Function: Compile Timestamp for the FPGA firmware.

Type: unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the compile timestamp of the board’s FPGA

Operational Settings: The 32-bit value represents the Day, Month, Year, Hour, Minutes and Seconds as formatted in the table:

Table 32. FPGA Compile Timestamp

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

day (5-bits)

month (4-bits)

year (6-bits)

hr

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

hour (5-bits)

minutes (6-bits)

seconds (6-bits)

FPGA SerDes Revision

Function: FPGA SerDes revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the SerDes revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 33. FPGA SerDes Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Template Revision

Function: FPGA Template revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the template revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 34. FPGA Template Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Zynq Block Revision

Function: FPGA Zynq Block revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Zynq block revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 35. FPGA Zynq Block Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Bare Metal Version Registers

The Bare Metal firmware version registers include registers that contain the Revision and Compile Time information.

Bare Metal Revision

Function: Bare Metal firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s Bare Metal

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 36. Bare Metal Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Bare Metal Compile Time

Function: Provides an ASCII representation of the Date/Time for the Bare Metal compile time.

Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the ASCII representation of the compile time of the board’s Bare Metal

Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time. The hexadecimal values in the field below represent: May 17 2019 at 15:38:32

Table 37. Bare Metal Compile Time (Note: little-endian order of ASCII values)

Word 1 (Ex. 0x2079614D)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Month ('y' - 0x79)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Month ('a' - 0x61)

Month ('M' - 0x4D)

Word 2 (Ex. 0x32203731)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Year ('2' - 0x32)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Day ('7' - 0x37)

Day ('1' - 0x31)

Word 3 (Ex. 0x20393130)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Year ('9' - 0x39)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year ('1' - 0x31)

Year ('0' - 0x30)

Word 4 (Ex. 0x31207461)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Hour ('1' - 0x31)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x74)

't' (0x61)

Word 5 (Ex. 0x38333A35)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minute ('8' - 0x38)

Minute ('3' - 0x33)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

':' (0x3A)

Hour ('5' - 0x35)

Word 6 (Ex. 0x0032333A)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

NULL (0x00)

Seconds ('2' - 0x32)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Seconds ('3' - 0x33)

':' (0x3A)

FSBL Version Registers

The FSBL version registers include registers that contain the Revision and Compile Time information for the First Stage Boot Loader (FSBL).

FSBL Revision

Function: FSBL firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s FSBL

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 38. FSBL Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FSBL Compile Time

Function: Provides an ASCII representation of the Date/Time for the FSBL compile time.

Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the ASCII representation of the Compile Time of the board’s FSBL

Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time.

The hexadecimal values in the field below represent: May 17 2019 at 15:38:32

Table 39. FSBL Compile Time (Note: little-endian order of ASCII values)

Word 1 (Ex. 0x2079614D)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Month ('y' - 0x79)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Month ('a' - 0x61)

Month ('M' - 0x4D)

Word 2 (Ex. 0x32203731)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Year ('2' - 0x32)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Day ('7' - 0x37)

Day ('1' - 0x31)

Word 3 (Ex. 0x20393130)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Year ('9' - 0x39)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year ('1' - 0x31)

Year ('0' - 0x30)

Word 4 (Ex. 0x31207461)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Hour ('1' - 0x31)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x74)

't' (0x61)

Word 5 (Ex. 0x38333A35)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minute ('8' - 0x38)

Minute ('3' - 0x33)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

':' (0x3A)

Hour ('5' - 0x35)

Word 6 (Ex. 0x0032333A)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

NULL (0x00)

Seconds ('2' - 0x32)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Seconds ('3' - 0x33)

':' (0x3A)

Module Serial Number Registers

The Module Serial Number registers include registers that contain the Serial Numbers for the Interface Board and the Functional Board of the module.

Interface Board Serial Number

Function: Unique 128-bit identifier used to identify the interface board.

Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Serial number of the interface board

Operational Settings: This register is for information purposes only.

Functional Board Serial Number

Function: Unique 128-bit identifier used to identify the functional board.

Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Serial number of the functional board

Operational Settings: This register is for information purposes only.

Module Capability

Function: Provides indication for whether or not the module can support the following: SerDes block reads, SerDes FIFO block reads, SerDes packing (combining two 16-bit values into one 32-bit value) and floating point representation. The purpose for block access and packing is to improve the performance of accessing larger amounts of data over the SerDes interface.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0107

Read/Write: R

Initialized Value: 0x0000 0103

Operational Settings: A “1” in the bit associated with the capability indicates that it is supported.

Table 40. Module Capability

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

Flt-Pt

0

0

0

0

0

Pack

FIFO Blk

Blk

Module Memory Map Revision

Function: Module Memory Map revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Module Memory Map Revision

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 41. Module Memory Map Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Module Measurement Registers

The registers in this section provide module temperature measurement information.

Temperature Readings Registers

The temperature registers provide the current, maximum (from power-up) and minimum (from power-up) Zynq and PCB temperatures.

Interface Board Current Temperature

Function: Measured PCB and Zynq Core temperatures on Interface Board.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB and Zynq core temperatures based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 202C, this represents PCB Temperature = 32° Celsius and Zynq Temperature = 44° Celsius.

Table 42. Interface Board Current Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Functional Board Current Temperature

Function: Measured PCB temperature on Functional Board.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0019, this represents PCB Temperature = 25° Celsius.

Table 43. Functional Board Current Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Interface Board Maximum Temperature

Function: Maximum PCB and Zynq Core temperatures on Interface Board since power-on.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the maximum measured PCB and Zynq core temperatures since power-on based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the maximum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 5569, this represents maximum PCB Temperature = 85° Celsius and maximum Zynq Temperature = 105° Celsius.

Table 44. Interface Board Maximum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Interface Board Minimum Temperature

Function: Minimum PCB and Zynq Core temperatures on Interface Board since power-on.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the minimum measured PCB and Zynq core temperatures since power-on based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the minimum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 D8E7, this represents minimum PCB Temperature = -40° Celsius and minimum Zynq Temperature = -25° Celsius.

Table 45. Interface Board Minimum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Functional Board Maximum Temperature

Function: Maximum PCB temperature on Functional Board since power-on.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0055, this represents PCB Temperature = 85° Celsius.

Table 46. Functional Board Maximum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Functional Board Minimum Temperature

Function: Minimum PCB temperature on Functional Board since power-on.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 00D8, this represents PCB Temperature = -40° Celsius.

Table 47. Functional Board Minimum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Higher Precision Temperature Readings Registers

These registers provide higher precision readings of the current Zynq and PCB temperatures.

Higher Precision Zynq Core Temperature

Function: Higher precision measured Zynq Core temperature on Interface Board.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Zynq Core temperature on Interface Board

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x002B 0271, this represents Zynq Core Temperature = 43.625° Celsius, and value 0xFFF6 0177 represents -10.375° Celsius.

Table 48. Higher Precision Zynq Core Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Interface PCB Temperature

Function: Higher precision measured Interface PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Interface PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x0020 007D, this represents Interface PCB Temperature = 32.125° Celsius, and value 0xFFE8 036B represents -24.875° Celsius.

Table 49. Higher Precision Interface PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Functional PCB Temperature

Function: Higher precision measured Functional PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Functional PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/100 of degree Celsius. For example, if the register contains the value 0x0018 004B, this represents Functional PCB Temperature = 24.75° Celsius, and value 0xFFD9 0019 represents -39.25° Celsius.

Table 50. Higher Precision Functional PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Module Health Monitoring Registers

The registers in this section provide module temperature measurement information. If the temperature measurements reaches the Lower Critical or Upper Critical conditions, the module will automatically reset itself to prevent damage to the hardware.

Module Sensor Summary Status

Function: The corresponding sensor bit is set if the sensor has crossed any of its thresholds.

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: This register provides a summary for module sensors. When the corresponding sensor bit is set, the Sensor Threshold Status register for that sensor will indicate the threshold condition that triggered the event.

Table 51. Module Sensor Summary Status

Bit(s)

Sensor

D31:D6

Reserved

D5

Functional Board PCB Temperature

D4

Interface Board PCB Temperature

D3:D0

Reserved

Module Sensor Registers

The registers listed in this section apply to each module sensor listed for the Module Sensor Summary Status register. Each individual sensor register provides a group of registers for monitoring module temperatures readings. From these registers, a user can read the current temperature of the sensor in addition to the minimum and maximum temperature readings since power-up. Upper and lower critical/warning temperature thresholds can be set and monitored from these registers. When a programmed temperature threshold is crossed, the Sensor Threshold Status register will set the corresponding bit for that threshold. The figure below shows the functionality of this group of registers when accessing the Interface Board PCB Temperature sensor as an example.

Module Sensor Registers
Sensor Threshold Status

Function: Reflects which threshold has been crossed

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: The associated bit is set when the sensor reading exceed the corresponding threshold settings.

Table 52. Sensor Threshold Status

Bit(s)

Description

D31:D4

Reserved

D3

Exceeded Upper Critical Threshold

D2

Exceeded Upper Warning Threshold

D1

Exceeded Lower Critical Threshold

D0

Exceeded Lower Warning Threshold

Sensor Current Reading

Function: Reflects current reading of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents current sensor reading as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Minimum Reading

Function: Reflects minimum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents minimum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Maximum Reading

Function: Reflects maximum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents maximum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Lower Warning Threshold

Function: Reflects lower warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC220 0000 represents temperature = -40.0° Celsius.

Sensor Lower Critical Threshold

Function: Reflects lower critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC25C 0000 represents temperature = -55.0° Celsius.

Sensor Upper Warning Threshold

Function: Reflects upper warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42AA 0000 represents temperature = 85.0° Celsius.

Sensor Upper Critical Threshold

Function: Reflects upper critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42FA 0000 represents temperature = 125.0° Celsius.

FUNCTION REGISTER MAP

Key

Bold Underline

= Measurement/Status/Board Information

Bold Italic

= Configuration/Control

Module Information Registers

0x003C

FPGA Revision

R

0x0030

FPGA Compile Timestamp

R

0x0034

FPGA SerDes Revision

R

0x0038

FPGA Template Revision

R

0x0040

FPGA Zynq Block Revision

R

0x0074

Bare Metal Revision

R

0x0080

Bare Metal Compile Time (Bit 0-31)

R

0x0084

Bare Metal Compile Time (Bit 32-63)

R

0x0088

Bare Metal Compile Time (Bit 64-95)

R

0x008C

Bare Metal Compile Time (Bit 96-127)

R

0x0090

Bare Metal Compile Time (Bit 128-159)

R

0x0094

Bare Metal Compile Time (Bit 160-191)

R

0x007C

FSBL Revision

R

0x00B0

FSBL Compile Time (Bit 0-31)

R

0x00B4

FSBL Compile Time (Bit 32-63)

R

0x00B8

FSBL Compile Time (Bit 64-95)

R

0x00BC

FSBL Compile Time (Bit 96-127)

R

0x00C0

FSBL Compile Time (Bit 128-159)

R

0x00C4

FSBL Compile Time (Bit 160-191)

R

0x0000

Interface Board Serial Number (Bit 0-31)

R

0x0004

Interface Board Serial Number (Bit 32-63)

R

0x0008

Interface Board Serial Number (Bit 64-95)

R

0x000C

Interface Board Serial Number (Bit 96-127)

R

0x0010

Functional Board Serial Number (Bit 0-31)

R

0x0014

Functional Board Serial Number (Bit 32-63)

R

0x0018

Functional Board Serial Number (Bit 64-95)

R

0x001C

Functional Board Serial Number (Bit 96-127)

R

0x0070

Module Capability

R

0x01FC

Module Memory Map Revision

R

Module Measurement Registers

0x0200

Interface Board PCB/Zynq Current Temperature

R

0x0208

Functional Board PCB Current Temperature

R

0x0218

Interface Board PCB/Zynq Max Temperature

R

0x0228

Interface Board PCB/Zynq Min Temperature

R

0x0218

Functional Board PCB Max Temperature

R

0x0228

Functional Board PCB Min Temperature

R

0x02C0

Higher Precision Zynq Core Temperature

R

0x02C4

Higher Precision Interface PCB Temperature

R

0x02E0

Higher Precision Functional PCB Temperature

R

Module Health Monitoring Registers

0x07F8

Module Sensor Summary Status

R

Module Sensor Registers Memory Map

Revision History

Module Manual - RG1 Revision History

Revision

Revision

Date Description

C

2022-09-16

ECO C09625, initial release of module manual.

C1

2024-01-04

ECO C11122, pg.5, removed reference to independent input/output. Pg.8, removed reference to independent input/output from Principle of Operation. Pg.9/29/34, added Module Common Registers. Pg.36, defined pin DATIO20 as ISO_GND and added accompanying note.

Module Manual - Status and Interrupts Revision History

Revision

Revision Date

Description

C

2021-11-30

C08896; Transition manual to docbuilder format - no technical info change.

Module Manual - Module Common Registers Revision History

Revision

Revision Date

Description

C

2023-08-11

ECO C10649, initial release of module common registers manual.

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients’ time-to-mission with a unique approach based on a Configurable Open Systems Architecture™ (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

Application Notes

Calibration and Repairs

Call Us

(631) 567-1100

Help Bot

X