Chip Detector Module
Edit this on GitLab
INTRODUCTION
This module manual provides information about the North Atlantic Industries, Inc. (NAI) Chip Detector Function Module: CD1. This module is compatible with all NAI Generation 5 motherboards. When bearings and gears start to fail in a machine, they shed metallic wear debris into the lubricant. The presence of a significant number of metal chips in the transmission fluid usually indicates mechanical problems. A chip detector is used to monitor the health of the engine or gear box. The chip detector is partially immersed in the transmission fluid so that it is exposed to the metal chips circulating inside of the fluid. The chip detector has a magnet to attract and retain metal chips of all sizes. Much of the metallic chips are referred to as “fuzz” which is produced by normal wear of components and represent no danger. New transmission and engines, for instance, produce relatively large amounts of fuzz during their break-in periods. This fuzz builds up in the chip detector, causing a short across the contacts of the chip detect. The problem is how to distinguish between relatively harmless fuzz from that of larger size chips which indicate that the piece of equipment being monitored has internal components that are failing. If the failure of internal components goes undetected, a catastrophic equipment failure is possibly imminent. Thus, there is a real need to be able to, during flight, determine if the chip detector has detected large chips or just nuisance fuzz. Too many false alarms caused by nuisance fuzz degrades the effectiveness of the chip detector system as a pilot is more likely to attribute a chip indication to just another false alarm. The Chip Detector Module CD1 provides 6 chip detection and burn channels. Each channel has a programmable energy setting and can be configured for either manual or automatic burn.
FEATURES
-
Six (6) chip detection and burn channels.
-
Programmable energy setting of 0.25 to 2.30 Joules.
-
Programmable Auto-Burn feature allows the user to specify threshold and maximum burn count.
-
Built-in Test
PRINCIPLE OF OPERATION
The CD1 module provides both Chip Detection and Fuzz Burn capability. Programming capabilities for chip detection thresholds, fuzz burn energy levels and retries allows for this module to be used on many different types of engines/gearboxes. In addition, the CD1 module includes internal built-in tests that provide monitoring of the Chip Detection and Fuzz Burn circuitry.
Chip Detection
The CD1 provides programmable resistance thresholds (warning and fault) for each channel independently. The module will read and store each channel’s resistance. A warning status bit will be set if the resistance is below the warning resistance threshold set by the user. A fault status bit will be set if the resistance is below the fault resistance threshold. Programming capability allows for common circuit use on many different types of gearbox/transmissions.
Fuzz Burn
The CD1 provides programmable energy level controls for each channel independently for the Fuzz Burn charge and release. A programmable energy level control provides adjustable parameters for the Fuzz Burn that may be tailored for different gearbox/transmission characteristics.
The Fuzz Burn feature can be configured in Auto-Burn or Manual-Burn mode. In Auto-Burn mode, the user will load a warning resistance threshold, fault resistance threshold and maximum count. After this setup, the user will enable the Auto-Burn bit in the configuration register to arm the system. The system will automatically initiate a burn when the channel resistance is at or below the fault resistance threshold. The auto-burn will continue until the measured resistance goes above the warning resistance threshold or the maximum Auto-Burn count is met. In Manual-Burn, the user can monitor the channel resistance to decide when to initiate a burn.
The burn count will automatically reset to zero and rearm for continued operation without further intervention if the burn operation is successful and the detected resistance rises above the warning threshold.
Built-in Test
The CD1 module supports three types of built-in tests: Initiated, Power-On, and Background. The results of these tests are logically ORed together and stored in the BIT Dynamic Status and BIT Latched Status registers. Test coverage is module-wide, for circuitry common to all channels.
Initiated Built-In Test
The user Initiated Built-In-Test (IBIT) is a charge and discharge test on the BIT channel. After the test completes, the user can read the results stored in the BIT Dynamic Status register, a 0 indicates that the channel has passed and a 0x3F indicates that it failed.
Power-On Built-In Test
The Power-On Built-In-Test (PBIT) is performed on the module automatically when power is applied. The Power- On BIT runs the same test as Initiated BIT, and automatically performed on boot-up. Results of the test are stored in the BIT Dynamic Status register.
Background Built-In Test
The background Built-In-Test or Continuous BIT (CBIT) runs in the background for the module. It charges up the capacitor bank to a different voltage each iteration and discharges it to an on-board load. If the circuitry detects an incorrect voltage or discharge profile, a BIT error will be set. Channels that are enabled and discharged will also be checked for an acceptable discharge profile. The results of this background test are stored in the BIT Dynamic Status register. Test intervals of 150 seconds minimize impact on normal operation.
Status and Interrupts
The Chip Detection/Fuzz Burn Function Module provides registers that indicate faults or events. Refer to “Status and Interrupts Module Manual” for the Principle of Operation description.
Module Common Registers
The Chip Detection/Fuzz Burn Function Module includes module common registers that provide access to module-level bare metal/FPGA revisions & compile times, unique serial number information, and temperature/voltage/current monitoring. Refer to “Module Common Registers Module Manual” for the detailed information.
REGISTER DESCRIPTIONS
The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, a description of the function and where applicable, a data table.
Chip Detection Registers
The registers associated with the Chip Detection feature allow configuration of individual channels. Settings include channel enable/disable, burn modes, and the thresholds for the Chip Detect Warning and Fault status.
Channel resistance registers allow reading of the detected resistance on each channel.
Channel Enabled
Function: Enables the chip detection for the channel.
Type: unsigned binary word (32-bits)
Data Range: 0x0000 0000 to 0x0000 003F
Read/Write: R/W
Initialized Value: 0x00000000
Operational Settings: Set to '1' to enable the chip detection, '0' to disable chip detection for the channel. Disabled channels will not trigger burn events or report status. When a channel is reenabled from a disabled state, the burn counter will automatically reset to 0 to allow for a full burn count sequence.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ch6 |
Ch5 |
Ch4 |
Ch3 |
Ch2 |
Ch1 |
Channel Resistance
Function: Measured resistance for the channel.
Type: unsigned binary word (32-bits)
Data Range: 0 to 100000 (0x0000 0000 to 0x0001 86A0)
Read/Write: R
Initialized Value: N/A
Operational Settings: Measures resistance in ohms. This reading is used to determine if Fuzz Burn is needed when the mode is configured for Auto-Burn. Readings to 100kΩ, with optimal measurement accuracy with resistance values below 8kΩ.
All burn triggers observe a burn threshold of 2kΩ. Burn triggering for each channel is suppressed for all threshold settings and burn modes when the measured resistance is above 2kΩ.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
Warning Resistance Threshold
Function: Sets the resistance threshold associated with the Warning Resistance Level Status.
Type: unsigned binary word (32-bits)
Data Range: 0 to 100000 (0x0000 0000 to 0x0001 86A0)
Read/Write: R/W
Initialized Value: 100000
Operational Settings: When the measured resistance is below this threshold, the Warning Resistance Level Status is set for this channel. After a burn event, a detected resistance above the warning threshold will automatically reset the burn count to allow for continued operation.
Warning Resistance Threshold
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
Fault Resistance Threshold
Function: Sets the resistance threshold associated with the Fault Resistance Level Status.
Type: unsigned binary word (32-bits)
Data Range: 0 to 100000 (0x0000 0000 to 0x0001 86A0)
Read/Write: R/W
Initialized Value: 0
Operational Settings: When the measured resistance is at or below this threshold, the Fault Resistance Level Status is set for this channel. This threshold is the primary criteria for triggering auto-burn pulses.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
Open Resistance Threshold
Function: Sets the resistance threshold associated with the Open Resistance Level Status.
Type: unsigned binary word (32-bits)
Data Range: 1000 to 400000
Read/Write: R/W
Initialized Value: 0 Operational Settings: When the measured resistance is above this threshold, the Open Resistance Level Status is set for this channel. Recommended configuration with a monitor resistance connected in parallel to the operating channels, with this threshold set to allow detection of an open wire harness connection. Open Resistance Threshold
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
D |
Fuzz Burn Registers
The registers associated with the Fuzz Burn are used for individual channel configuration of the energy setting, burn mode, and burn count limit.
Energy Setting
Function: Sets the channel’s energy level in Joules
Type: Single Precision Floating Point Value (IEEE-754)
Data Range: 0.25 to 2.30
Read/Write: R/W
Initialized Value: 0.25
Operational Settings: This sets the pulse energy to be delivered when a burn is triggered. Typical requirement for burn of a 0.003 wire standard is approximately 0.6J.
Auto-Burn Mode Select
Function: Configures for auto-burn or manual-burn mode for channel.
Type: unsigned binary word (32-bits)
Data Range: 0x0000 0000 to 0x0000 003F
Read/Write: R/W
Initialized Value: 0x00000000
Operational Settings: Set bit associated with the channel to '1' for auto-burn mode or '0' for manual-burn mode. Auto-burn mode will fire the burn automatically when the monitored resistance threshold requirements are met. Manual burn mode allows the user to trigger a burn pulse manually, provided the detected resistance is below a 2kΩ threshold.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ch6 |
Ch5 |
Ch4 |
Ch3 |
Ch2 |
Ch1 |
Auto-Burn Maximum Count
Function: When Auto-Burn Select Mode is set, this register specifies the maximum number of burns before the module stops the fuzz burn.
Type: unsigned binary word (32-bits)
Data Range: 0 to 20 (0x0000 0000 to 0x0000 0014)
Read/Write: R/W
Initialized Value: 0
Operational Settings: When Auto-Burn Select Mode is set, this register specifies the maximum number of burns before the module stops and sets “Auto Burn Complete” bit in the Auto-Burn Count register. Auto-Burn Maximum Count
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D |
D |
D |
D |
D |
D |
Auto-Burn Count
Function: When Auto-Burn Select Mode is set, this register specifies the number of Auto-Burn attempts since enabled.
Type: unsigned binary word (32-bits)
Data Range: See table
Read/Write: R
Initialized Value: 0
Operational Settings: When Auto-Burn Select Mode is set, this register specifies the maximum number of burns attempts. After each burn attempt, the resistance value is read. If the value is above the value for the Warning Resistance Threshold, the module stops the burn attempt. If the resistance read is below value specified for the Fault Resistance Threshold, the module will continue to attempt to burn the fuzz until the number of attempts reach the Auto-Burn Maximum Count value or the resistance is above the threshold value after the burn.
Bit(s) |
Interface |
Description |
D31-D16 |
Reserved |
Set Reserved bits to 0 |
D5-D0 |
Auto Burn Count of Channel |
Count |
Manual-Burn Initiate
Function: When Auto-Burn Select Mode for the channel is set to Manual-Burn, writing to the bit associated with the channel will initiate a manual burn. Bit will be cleared after burn completed.
Type: unsigned binary word (32-bits)
Data Range: NA
Read/Write: R/W
Initialized Value: 0x00000000
Operational Settings: Set channel bit to '1' to initiate a manual burn.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ch6 |
Ch5 |
Ch4 |
Ch3 |
Ch2 |
Ch1 |
Test Registers
The chip detect module provides the ability to run an initiated test (IBIT).
Test Enabled
Function: Set bit IBIT to enable the associated Initiated Built-In-Test.
Type: unsigned binary word (32-bit)
Data Range: 0 to 0x0000 0008
Read/Write: R/W
Initialized Value: 0x0
Operational Settings: BIT tests include an Initiated BIT test. Failures in the BIT test are reflected in the BIT Status registers for the corresponding channels that fail. In addition, an interrupt (if enabled in the BIT Interrupt Enable register) can be triggered when the BIT testing detects failures.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
IBIT |
0 |
0 |
0 |
Background BIT Threshold Programming Registers
The technique used by the automatic background BIT test consists of an “add-2, subtract-1” counting scheme. The BIT counter is incremented by 2 when a BIT-fault is detected and decremented by 1 when there is no BIT fault detected and the BIT counter is greater than 0. When the BIT counter exceeds the (programmed) BIT Threshold value, the specific channel’s fault bit in the BIT status register will be set. The “add-2, subtract-1” counting scheme effectively filters momentary or intermittent anomalies by allowing them to “come and go“ before a BIT fault status or indication is flagged. This prevents spurious faults from registering valid such as those caused by EMI and/or dirty power causing false BIT faults. Putting more “weight” on errors (“add-2”) and less “weight” on subsequent passing results (subtract-1) will result in a BIT failure indication even if a channel “oscillates” between a pass and fail state.
For example, the Background BIT Threshold is set to 6 (Initialized Value). During normal operation, the automatic background BIT sequence is operating. In each of three separate (but consecutive) 150-second BIT sequences, an internal BIT fault is detected. This will cause the fault bit within the BIT Status register of that specific channel to be set. The reason for this is as each BIT sequence was internally identified as “failed”, the internal BIT counter added two counts (+2) per fault. Three consecutive BIT faults (x3) results in an internal count of 6, which meets the programmed Background BIT Threshold of 6. Therefore:
BIT Status (channel) = 1 (set) when (+2 counts when failed) x (3 BIT sequences) ≥ 6 (Threshold).
Background BIT Threshold
Function: Sets background BIT Threshold value to use for all channels for BIT failure indication.
Data Range: 1 to 65,535
Read/Write: R/W
Initialized Value: 6
Operational Settings: Using the automatic background BIT test counting scheme described in Background BIT Threshold Programming Registers, the Background BIT Threshold is specified as an internal “count” compare number. This “count” number is associated and compared to a count of faulted internal BIT sequences. The BIT sequence execution time is approximately 150 sec. (the time is typical; it may vary and is dependent on module board platform configuration). A specific channel’s BIT fault status will be set in the BIT Status register once the internal BIT counter has met or exceeded the programmed Background BIT Threshold value (refer to Section 5.4 for detailed description of this function).
Reset BIT
Function: Resets the PBIT, CBIT and IBIT internal circuitry and count mechanism.
Type: unsigned binary word (32-bit)
Data Range: 0 to 0x0000 FFFF
Read/Write: W
Initialized Value: 0
Operational Settings: Set bit to 1 to reset the PBIT, CBIT and IBIT mechanisms. Bit is self-clearing. Reset BIT
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
All |
Module Common Registers
Refer to “Module Common Registers Module Manual” for the register descriptions.
Status and Interrupt Registers
The CD1 Module provides status registers for BIT, Warning Resistance and Fault Resistance Thresholds as well as Channel Status.
BIT Status
There are four registers associated with the BIT Status: Dynamic Status, Latched Status, Interrupt Enable, and Set Edge/Level Interrupt.
BIT Dynamic Status |
|||||||||||||||
BIT Latched Status |
|||||||||||||||
BIT Interrupt Enable |
|||||||||||||||
BIT Set Edge/Level Interrupt |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ch6 |
Ch5 |
Ch4 |
Ch3 |
Ch2 |
Ch1 |
Function: Sets the corresponding bit associated with the channel’s BIT error.
Type: unsigned binary word (32-bits)
Data Range: 0x0000 0000 to 0x0000 0001
Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)
Initialized Value: 0
Warning Resistance Status
There are four registers associated with the Warning Resistance Status: Dynamic Status, Latched Status, Interrupt Enable, and Set Edge/Level Interrupt.
Warning Resistance Dynamic Status |
|||||||||||||||
Warning Resistance Latched Status |
|||||||||||||||
Warning Resistance Interrupt Enable |
|||||||||||||||
Warning Resistance Set Edge/Level Interrupt |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ch6 |
Ch5 |
Ch4 |
Ch3 |
Ch2 |
Ch1 |
Function: Status for warning resistance level. If measured resistance is below the Warning Resistance Threshold setting, the bit associated with that channel will be set to a 1.
Type: unsigned binary word (32-bits)
Data Range: 0x0000 0000 to 0x0000 003F
Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)
Initialized Value: 0x00000000
Fault Resistance Status
There are four registers associated with the Fault Resistance Status: Dynamic Status, Latched Status, Interrupt Enable, and Set Edge/Level Interrupt.
Fault Resistance Dynamic Status |
|||||||||||||||
Fault Resistance Latched Status |
|||||||||||||||
Fault Resistance Interrupt Enable |
|||||||||||||||
Fault Resistance Set Edge/Level Interrupt |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ch6 |
Ch5 |
Ch4 |
Ch3 |
Ch2 |
Ch1 |
Function: Status for fault resistance level. If measured resistance is below the Fault Resistance Threshold setting, the bit associated with that channel will be set to a 1.
Type: unsigned binary word (32-bits)
Data Range: 0x0000 0000 to 0x0000 003F
Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)
Initialized Value: 0x00000000
Open Resistance Status
There are four registers associated with the Fault Resistance Status: Dynamic Status, Latched Status, Interrupt Enable, and Set Edge/Level Interrupt.
Open Resistance Dynamic Status |
|||||||||||||||
Open Resistance Latched Status |
|||||||||||||||
Open Resistance Interrupt Enable |
|||||||||||||||
Open Resistance Set Edge/Level Interrupt |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ch6 |
Ch5 |
Ch4 |
Ch3 |
Ch2 |
Ch1 |
Function: Status for an open resistance level. If measured resistance is above the Open Resistance Threshold setting, the bit associated with that channel will be set to a 1.
Type: unsigned binary word (32-bits)
Data Range: 0x0000 0000 to 0x0000 003F
Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)
Initialized Value: 0x00000000
Summary Status
There are four registers associated with the Summary Status: Dynamic Status, Latched Status, Interrupt Enable, and Set Edge/Level Interrupt.
Summary Dynamic Status |
|||||||||||||||
Summary Latched Status |
|||||||||||||||
Summary Interrupt Enable |
|||||||||||||||
Summary Set Edge/Level Interrupt |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ch6 |
Ch5 |
Ch4 |
Ch3 |
Ch2 |
Ch1 |
Function: Sets the corresponding bit associated with the channel that has an error condition. Allows monitoring of a single register to detect multiple types of errors. The summary status is an OR of the following individual status register components: Fault, Warning, Open, and BIT. Bit mapped for per-channel indication.
Type: unsigned binary word (32-bits)
Data Range: 0x0000 0000 to 0x0000 003F
Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Set Edge/Level Interrupt)
Initialized Value: NA
Interrupt Vector and Steering
When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector register is reported as part of the interrupt mechanism.
In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.
Note
|
the Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map). |
Interrupt Vector
Function: Set an identifier for the interrupt.
Type: unsigned binary word (32-bit)
Read/Write: R/W
Initialized Value: 0
Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.
Interrupt Steering
Function: Sets where to direct the interrupt.
Type: unsigned binary word (32-bit)
Read/Write: R/W
Initialized Value: 0
Operational Settings: When an interrupt occurs, the interrupt is sent as specified:
Direct Interrupt to VME | 1 |
---|---|
Direct Interrupt to ARM Processor (via SerDes) (Custom App on ARM or NAI Ethernet Listener App) |
2 |
Direct Interrupt to PCIe Bus |
5 |
Direct Interrupt to cPCI Bus |
6 |
FUNCTION REGISTER MAP
Key:
Bold Italic = Configuration/Control
Bold Underline = Measurement/Status
*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e., write-1- to-clear, writing a “1” to a bit set to “1” will set the bit to “0).
~ Data is always in Floating Point.
Chip Detection Registers
0x1000 |
Channel Enabled |
R/W |
0x1104 |
Channel Resistance Ch 1 |
R/W |
0x1204 |
Channel Resistance Ch 2 |
R/W |
0x1304 |
Channel Resistance Ch 3 |
R/W |
0x1404 |
Channel Resistance Ch 4 |
R/W |
0x1504 |
Channel Resistance Ch 5 |
R/W |
0x1604 |
Channel Resistance Ch 6 |
R/W |
0x110C |
Warning Resistance Threshold Ch 1 |
R/W |
0x120C |
Warning Resistance Threshold Ch 2 |
R/W |
0x130C |
Warning Resistance Threshold Ch 3 |
R/W |
0x140C |
Warning Resistance Threshold Ch 4 |
R/W |
0x150C |
Warning Resistance Threshold Ch 5 |
R/W |
0x160C |
Warning Resistance Threshold Ch 6 |
R/W |
0x1110 |
Open Resistance Threshold Ch 1 |
R/W |
0x1210 |
Open Resistance Threshold Ch 2 |
R/W |
0x1310 |
Open Resistance Threshold Ch 3 |
R/W |
0x1410 |
Open Resistance Threshold Ch 4 |
R/W |
0x1510 |
Open Resistance Threshold Ch 5 |
R/W |
0x1610 |
Open Resistance Threshold Ch 6 |
R/W |
0x1108 |
Fault Resistance Threshold Ch 1 |
R/W |
0x1208 |
Fault Resistance Threshold Ch 2 |
R/W |
0x1308 |
Fault Resistance Threshold Ch 3 |
R/W |
0x1408 |
Fault Resistance Threshold Ch 4 |
R/W |
0x1508 |
Fault Resistance Threshold Ch 5 |
R/W |
0x1608 |
Fault Resistance Threshold Ch 6 |
R/W |
Fuzz Burn Registers
0x1100 |
Energy Setting Ch 1~ |
R/W |
0x1200 |
Energy Setting Ch 3~ |
R/W |
0x1400 |
Energy Setting Ch 4~ |
R/W |
0x1500 |
Energy Setting Ch 5~ |
R/W |
0x1600 |
Energy Setting Ch 6~ |
R/W |
0x1008 |
Auto-Burn Mode Select |
R/W |
0x1004 |
Manual-Burn Initiate |
R/W |
0x1114 |
Auto-Burn Maximum Count Ch 1 |
R/W |
0x1214 |
Auto-Burn Maximum Count Ch 2 |
R/W |
0x1314 |
Auto-Burn Maximum Count Ch 3 |
R/W |
0x1414 |
Auto-Burn Maximum Count Ch 4 |
R/W |
0x1514 |
Auto-Burn Maximum Count Ch 5 |
R/W |
0x1614 |
Auto-Burn Maximum Count Ch 6 |
R/W |
0x111C |
Auto-Burn Count Ch 1 |
R |
0x121C |
Auto-Burn Count Ch 2 |
R |
0x131C |
Auto-Burn Count Ch 3 |
R |
0x141C |
Auto-Burn Count Ch 4 |
R |
0x151C |
Auto-Burn Count Ch 5 |
R |
0x161C |
Auto-Burn Count Ch 6 |
R |
Background BIT Threshold Programming Registers
0x02B8 |
Background BIT Threshold |
R/W |
0x02A8 |
Clear Background BIT Counter |
W |
Status Registers
Warning Resistance Status
0x0810 |
Dynamic Channel Status |
R |
0x0814 |
Latched Channel Status* |
R/W |
0x0818 |
*_Warning Resistance Interrupt Enable |
R/W |
0x081C |
*_Warning Resistance Set Edge/Level Interrupt |
R/W |
Fault Resistance Status
0x0820 |
Dynamic Channel Status |
R |
0x0824 |
Latched Channel Status* |
R/W |
0x0828 |
*_Fault Resistance Interrupt Enable |
R/W |
0x082C |
*_Fault Resistance Set Edge/Level Interrupt |
R/W |
Open Resistance Status
0x0830 |
Dynamic Channel Status |
R |
0x0834 |
Latched Channel Status |
R/W |
0x0838 |
*_Channel Interrupt Enable |
R/W |
0x083C |
*_Channel Set Edge/Level Interrupt |
R/W |
Summary Status
0x09A0 |
*[.underline]#Dynamic Summary Status |
R |
0x09A4 |
*[.underline]#Latched Summary Status |
R/W |
0x09A8 |
*_Summary Interrupt Enable |
R/W |
0x09AC |
*_Summary Set Edge/Level Interrupt |
R/W |
Interrupt Registers
The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Memory Space and these addresses are absolute based on the module slot position. Do not apply the Module Address offset to these addresses.
0x0500 |
Module 1 Interrupt Vector 1 - BIT |
R/W |
0x0504 |
Module 1 Interrupt Vector 2 - Warning Resistance Status |
R/W |
0x0508 |
Module 1 Interrupt Vector 3 - Fault Resistance Status |
R/W |
0x050C |
Module 1 Interrupt Vector 4 - Channel Status Ch 1 |
R/W |
0x0510 |
Module 1 Interrupt Vector 5 - Channel Status Ch 2 |
R/W |
0x0514 |
Module 1 Interrupt Vector 6 - Channel Status Ch 3 |
R/W |
0x0518 |
Module 1 Interrupt Vector 7 - Channel Status Ch 4 |
R/W |
0x051C |
Module 1 Interrupt Vector 8 - Channel Status Ch 5 |
R/W |
0x0520 |
Module 1 Interrupt Vector 9 - Channel Status Ch 6 |
R/W |
0x0524 to 0x0564 |
Module 1 Interrupt Vector 10-26 - Reserved |
R/W |
0x0568 |
Module 1 Interrupt Vector 27 - Summary |
R/W |
0x056C to 0x057C |
Module 1 Interrupt Vector 28 - 32 - Reserved |
R/W |
0x0600 |
Module 1 Interrupt Steering 1 - BIT |
R/W |
0x0604 |
Module 1 Interrupt Steering 2 - Warning Resistance Status |
R/W |
0x0608 |
Module 1 Interrupt Steering 3 - Fault Resistance Status |
R/W |
0x060C |
Module 1 Interrupt Steering 4 - Channel Status Ch 1 |
R/W |
0x0610 |
Module 1 Interrupt Steering 5 - Channel Status Ch 2 |
R/W |
0x0614 |
Module 1 Interrupt Steering 6 - Channel Status Ch 3 |
R/W |
0x0618 |
Module 1 Interrupt Steering 7 - Channel Status Ch 4 |
R/W |
0x061C |
Module 1 Interrupt Steering 8 - Channel Status Ch 5 |
R/W |
0x0620 |
Module 1 Interrupt Steering 9 - Channel Status Ch 6 |
R/W |
0x0624 to 0x0664 |
Module 1 Interrupt Steering 10-26 - Reserved |
R/W |
0x0668 |
Module 1 Interrupt Steering 27 - Summary |
R/W |
0x066C to 0x067C |
Module 1 Interrupt Steering 28 - 32 - Reserved |
R/W |
0x0700 |
Module 2 Interrupt Vector 1 - BIT |
R/W |
0x0704 |
Module 2 Interrupt Vector 2 - Warning Resistance Status |
R/W |
0x0708 |
Module 2 Interrupt Vector 3 - Fault Resistance Status |
R/W |
0x070C |
Module 2 Interrupt Vector 4 - Channel Status Ch 1 |
R/W |
0x0710 |
Module 2 Interrupt Vector 5 - Channel Status Ch 2 |
R/W |
0x0714 |
Module 2 Interrupt Vector 6 - Channel Status Ch 3 |
R/W |
0x0718 |
Module 2 Interrupt Vector 7 - Channel Status Ch 4 |
R/W |
0x071C |
Module 2 Interrupt Vector 8 - Channel Status Ch 5 |
R/W |
0x0720 |
Module 2 Interrupt Vector 9 - Channel Status Ch 6 |
R/W |
0x0724 to 0x0764 |
Module 2 Interrupt Vector 10-26 - Reserved |
R/W |
0x0768 |
Module 2 Interrupt Vector 27 - Summary |
R/W |
0x076C to 0x077C |
Module 2 Interrupt Vector 28 - 32 - Reserved |
R/W |
0x0800 |
Module 2 Interrupt Steering 1 - BIT |
R/W |
0x0804 |
Module 2 Interrupt Steering 2 - Warning Resistance Status |
R/W |
0x0808 |
Module 2 Interrupt Steering 3 - Fault Resistance Status |
R/W |
0x080C |
Module 2 Interrupt Steering 4 - Channel Status Ch 1 |
R/W |
0x0810 |
Module 2 Interrupt Steering 5 - Channel Status Ch 2 |
R/W |
0x0814 |
Module 2 Interrupt Steering 6 - Channel Status Ch 3 |
R/W |
0x0818 |
Module 2 Interrupt Steering 7 - Channel Status Ch 4 |
R/W |
0x081C |
Module 2 Interrupt Steering 8 - Channel Status Ch 5 |
R/W |
0x0820 |
Module 2 Interrupt Steering 9 - Channel Status Ch 6 |
R/W |
0x0824 to 0x0864 |
Module 2 Interrupt Steering 10-26 - Reserved |
R/W |
0x0868 |
Module 2 Interrupt Steering 27 - Summary |
R/W |
0x086C to 0x087C |
Module 2 Interrupt Steering 28 - 32 - Reserved |
R/W |
0x0900 |
Module 3 Interrupt Vector 1 - BIT |
R/W |
0x0904 |
Module 3 Interrupt Vector 2 - Warning Resistance Status |
R/W |
0x0908 |
Module 3 Interrupt Vector 3 - Fault Resistance Status |
R/W |
0x090C |
Module 3 Interrupt Vector 4 - Channel Status Ch 1 |
R/W |
0x0910 |
Module 3 Interrupt Vector 5 - Channel Status Ch 2 |
R/W |
0x0914 |
Module 3 Interrupt Vector 6 - Channel Status Ch 3 |
R/W |
0x0918 |
Module 3 Interrupt Vector 7 - Channel Status Ch 4 |
R/W |
0x091C |
Module 3 Interrupt Vector 8 - Channel Status Ch 5 |
R/W |
0x0920 |
Module 3 Interrupt Vector 9 - Channel Status Ch 6 |
R/W |
0x0924 to 0x0964 |
Module 3 Interrupt Vector 10-26 - Reserved |
R/W |
0x0968 |
Module 3 Interrupt Vector 27 - Summary |
R/W |
0x096C to 0x097C |
Module 3 Interrupt Vector 28 - 32 - Reserved |
R/W |
0x0A00 |
Module 3 Interrupt Steering 1 - BIT |
R/W |
0x0A04 |
Module 3 Interrupt Steering 2 - Warning Resistance Status |
R/W |
0x0A08 |
Module 3 Interrupt Steering 3 - Fault Resistance Status |
R/W |
0x0A0C |
Module 3 Interrupt Steering 4 - Channel Status Ch 1 |
R/W |
0x0A10 |
Module 3 Interrupt Steering 5 - Channel Status Ch 2 |
R/W |
0x0A14 |
Module 3 Interrupt Steering 6 - Channel Status Ch 3 |
R/W |
0x0A18 |
Module 3 Interrupt Steering 7 - Channel Status Ch 4 |
R/W |
0x0A1C |
Module 3 Interrupt Steering 8 - Channel Status Ch 5 |
R/W |
0x0A20 |
Module 3 Interrupt Steering 9 - Channel Status Ch 6 |
R/W |
0x0A24 to 0x0A64 |
Module 3 Interrupt Steering 10-26 - Reserved |
R/W |
0x0A68 |
Module 3 Interrupt Steering 27 - Summary R/W |
0x0A6C to 0x0A7C |
0x0B00 |
Module 4 Interrupt Vector 1 - BIT |
R/W |
0x0B04 |
Module 4 Interrupt Vector 2 - Warning Resistance Status |
R/W |
0x0B08 |
Module 4 Interrupt Vector 3 - Fault Resistance Status |
R/W |
0x0B0C |
Module 4 Interrupt Vector 4 - Channel Status Ch 1 |
R/W |
0x0B10 |
Module 4 Interrupt Vector 5 - Channel Status Ch 2 |
R/W |
0x0B14 |
Module 4 Interrupt Vector 6 - Channel Status Ch 3 |
R/W |
0x0B18 |
Module 4 Interrupt Vector 7 - Channel Status Ch 4 |
R/W |
0x0B1C |
Module 4 Interrupt Vector 8 - Channel Status Ch 5 |
R/W |
0x0B20 |
Module 4 Interrupt Vector 9 - Channel Status Ch 6 |
R/W |
0x0B24 to 0x0B64 |
Module 4 Interrupt Vector 10-26 - Reserved |
R/W |
0x0B68 |
Module 4 Interrupt Vector 27 - Summary |
R/W |
0x0B6C to 0x0B7C |
Module 4 Interrupt Vector 28 - 32 - Reserved |
R/W |
0x0C00 |
Module 4 Interrupt Steering 1 - BIT |
R/W |
0x0C04 |
Module 4 Interrupt Steering 2 - Warning Resistance Status |
R/W |
0x0C08 |
Module 4 Interrupt Steering 3 - Fault Resistance Status |
R/W |
0x0C0C |
Module 4 Interrupt Steering 4 - Channel Status Ch 1 |
R/W |
0x0C10 |
Module 4 Interrupt Steering 5 - Channel Status Ch 2 |
R/W |
0x0C14 |
Module 4 Interrupt Steering 6 - Channel Status Ch 3 |
R/W |
0x0C18 |
Module 4 Interrupt Steering 7 - Channel Status Ch 4 |
R/W |
0x0C1C |
Module 4 Interrupt Steering 8 - Channel Status Ch 5 |
R/W |
0x0C20 |
Module 4 Interrupt Steering 9 - Channel Status Ch 6 |
R/W |
0x0C24 to 0x0C64 |
Module 4 Interrupt Steering 10-26 - Reserved |
R/W |
0x0C68 |
Module 4 Interrupt Steering 27 - Summary |
R/W |
0x0C6C to 0x0C7C |
Module 4 Interrupt Steering 28 - 32 - Reserved |
R/W |
0x0D00 |
Module 5 Interrupt Vector 1 - BIT |
R/W |
0x0D04 |
Module 5 Interrupt Vector 2 - Warning Resistance Status |
R/W |
0x0D08 |
Module 5 Interrupt Vector 3 - Fault Resistance Status |
R/W |
0x0D0C |
Module 5 Interrupt Vector 4 - Channel Status Ch 1 |
R/W |
0x0D10 |
Module 5 Interrupt Vector 5 - Channel Status Ch 2 |
R/W |
0x0D14 |
Module 5 Interrupt Vector 6 - Channel Status Ch 3 |
R/W |
0x0D18 |
Module 5 Interrupt Vector 7 - Channel Status Ch 4 |
R/W |
0x0D1C |
Module 5 Interrupt Vector 8 - Channel Status Ch 5 |
R/W |
0x0D20 |
Module 5 Interrupt Vector 9 - Channel Status Ch 6 |
R/W |
0x0D24 to 0x0D64 |
Module 5 Interrupt Vector 10-26 - Reserved |
R/W |
0x0D68 |
Module 5 Interrupt Vector 27 - Summary |
R/W |
0x0D6C to 0x0D7C |
Module 5 Interrupt Vector 28 - 32 - Reserved |
R/W |
0x0E00 |
Module 5 Interrupt Steering 1 - BIT |
R/W |
0x0E04 |
Module 5 Interrupt Steering 2 - Warning Resistance Status |
R/W |
0x0E08 |
Module 5 Interrupt Steering 3 - Fault Resistance Status |
R/W |
0x0E0C |
Module 5 Interrupt Steering 4 - Channel Status Ch 1 |
R/W |
0x0E10 |
Module 5 Interrupt Steering 5 - Channel Status Ch 2 |
R/W |
0x0E14 |
Module 5 Interrupt Steering 6 - Channel Status Ch 3 |
R/W |
0x0E18 |
Module 5 Interrupt Steering 7 - Channel Status Ch 4 |
R/W |
0x0E1C |
Module 5 Interrupt Steering 8 - Channel Status Ch 5 |
R/W |
0x0E20 |
Module 5 Interrupt Steering 9 - Channel Status Ch 6 |
R/W |
0x0E6C to 0x0E7C |
Module 5 Interrupt Steering 28 - 32 - Reserved |
R/W |
0x0F00 |
Module 6 Interrupt Vector 2 - Warning Resistance Status |
R/W |
0x0F08 |
Module 6 Interrupt Vector 3 - Fault Resistance Status |
R/W |
0x0F0C |
Module 6 Interrupt Vector 4 - Channel Status Ch 1 |
R/W |
0x0F10 |
Module 6 Interrupt Vector 5 - Channel Status Ch 2 |
R/W |
0x0F14 |
Module 6 Interrupt Vector 6 - Channel Status Ch 3 |
R/W |
0x0F18 |
Module 6 Interrupt Vector 7 - Channel Status Ch 4 |
R/W |
0x0F1C |
Module 6 Interrupt Vector 8 - Channel Status Ch 5 |
R/W |
0x0F20 |
Module 6 Interrupt Vector 9 - Channel Status Ch 6 |
R/W |
0x0F24 to 0x0F64 |
Module 6 Interrupt Vector 10-26 - Reserved |
R/W |
0x0F68 |
Module 6 Interrupt Vector 27 - Summary |
R/W |
0x0F6C to 0x0F7C |
Module 6 Interrupt Vector 28 - 32 - Reserved |
R/W |
0x1000 |
Module 6 Interrupt Steering 1 - BIT |
R/W |
0x1004 |
Module 6 Interrupt Steering 2 - Warning Resistance Status |
R/W |
0x1008 |
Module 6 Interrupt Steering 3 - Fault Resistance Status |
R/W |
0x100C |
Module 6 Interrupt Steering 4 - Channel Status Ch 1 |
R/W |
0x1010 |
Module 6 Interrupt Steering 5 - Channel Status Ch 2 |
R/W |
0x1014 |
Module 6 Interrupt Steering 6 - Channel Status Ch 3 |
R/W |
0x1018 |
Module 6 Interrupt Steering 7 - Channel Status Ch 4 |
R/W |
0x101C |
Module 6 Interrupt Steering 8 - Channel Status Ch 5 |
R/W |
0x1020 |
Module 6 Interrupt Steering 9 - Channel Status Ch 6 |
R/W |
0x1024 to 0x1064 |
Module 6 Interrupt Steering 10-26 - Reserved |
R/W |
0x1068 |
Module 6 Interrupt Steering 27 - Summary |
R/W |
0x106C to 0x107C |
Module 6 Interrupt Steering 28 - 32 - Reserved |
R/W |
APPENDIX: PIN-OUT DETAILS
Pin-out details (for reference) are shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Motherboard Operational Manuals.
Module Signal (Ref Only) |
Chip Detect (CD1) |
DATIO1 |
CH1-RET |
DATIO2 |
CH2-RET |
DATIO3 |
CH1-RET |
DATIO4 |
CH2-RET |
DATIO5 |
CH1-VOUT |
DATIO6 |
CH2-VOUT |
DATIO7 |
CH1-RET |
DATIO8 |
CH2-RET |
DATIO9 |
CH3-RET |
DATIO10 |
CH4-RET |
DATIO11 |
CH3-VOUT |
DATIO12 |
CH4-VOUT |
DATIO13 |
CH3-RET |
DATIO14 |
CH4-RET |
DATIO15 |
CH3-RET |
DATIO16 |
CH4-RET |
DATIO17 |
CH5-VOUT |
DATIO18 |
CH6-VOUT |
DATIO19 |
CH5-RET |
DATIO20 |
CH6-RET |
DATIO21 |
CH5-RET |
DATIO22 |
CH6-RET |
DATIO23 |
(+)28VIN |
DATIO24 |
28VIN-RTN |
DATIO25 |
CH1-RET |
DATIO26 |
CH2-RET |
DATIO27 |
CH3-RET |
DATIO28 |
CH4-RET |
DATIO29 |
CH5-RET |
DATIO30 |
CH6-RET |
DATIO31 |
CH5-RET |
DATIO32 |
CH6-RET |
DATIO33 |
|
DATIO34 |
|
DATIO35 |
|
DATIO36 |
|
DATIO37 |
|
DATIO38 |
|
DATIO39 |
|
DATIO40 |
|
N/A |
STATUS AND INTERRUPTS
Edit this on GitLab
Status registers indicate the detection of faults or events. The status registers can be channel bit-mapped or event bit-mapped. An example of a channel bit-mapped register is the BIT status register, and an example of an event bit-mapped register is the FIFO status register.
For those status registers that allow interrupts to be generated upon the detection of the fault or the event, there are four registers associated with each status: Dynamic, Latched, Interrupt Enabled, and Set Edge/Level Interrupt.
Dynamic Status: The Dynamic Status register indicates the current condition of the fault or the event. If the fault or the event is momentary, the contents in this register will be clear when the fault or the event goes away. The Dynamic Status register can be polled, however, if the fault or the event is sporadic, it is possible for the indication of the fault or the event to be missed.
Latched Status: The Latched Status register indicates whether the fault or the event has occurred and keeps the state until it is cleared by the user. Reading the Latched Status register is a better alternative to polling the Dynamic Status register because the contents of this register will not clear until the user commands to clear the specific bit(s) associated with the fault or the event in the Latched Status register. Once the status register has been read, the act of writing a 1 back to the applicable status register to any specific bit (channel/event) location will “clear” the bit (set the bit to 0). When clearing the channel/event bits, it is strongly recommended to write back the same bit pattern as read from the Latched Status register. For example, if the channel bit-mapped Latched Status register contains the value 0x0000 0005, which indicates fault/event detection on channel 1 and 3, write the value 0x0000 0005 to the Latched Status register to clear the fault/event status for channel 1 and 3. Writing a “1” to other channels that are not set (example 0x0000 000F) may result in incorrectly “clearing” incoming faults/events for those channels (example, channel 2 and 4).
Interrupt Enable: If interrupts are preferred upon the detection of a fault or an event, enable the specific channel/event interrupt in the Interrupt Enable register. The bits in Interrupt Enable register map to the same bits in the Latched Status register. When a fault or event occurs, an interrupt will be fired. Subsequent interrupts will not trigger until the application acknowledges the fired interrupt by clearing the associated channel/event bit in the Latched Status register. If the interruptible condition is still persistent after clearing the bit, this may retrigger the interrupt depending on the Edge/Level setting.
Set Edge/Level Interrupt: When interrupts are enabled, the condition on retriggering the interrupt after the Latch Register is “cleared” can be specified as “edge” triggered or “level” triggered. Note, the Edge/Level Trigger also affects how the Latched Register value is adjusted after it is “cleared” (see below).
-
Edge triggered: An interrupt will be retriggered when the Latched Status register change from low (0) to high (1) state. Uses for edgetriggered interrupts would include transition detections (Low-to-High transitions, High-to-Low transitions) or fault detections. After “clearing” an interrupt, another interrupt will not occur until the next transition or the re-occurrence of the fault again.
-
Level triggered: An interrupt will be generated when the Latched Status register remains at the high (1) state. Level-triggered interrupts are used to indicate that something needs attention.
Interrupt Vector and Steering
When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed with a unique number/identifier defined by the user such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.
Interrupt Trigger Types
In most applications, limiting the number of interrupts generated is preferred as interrupts are costly, thus choosing the correct Edge/Level interrupt trigger to use is important.
Example 1: Fault detection
This example illustrates interrupt considerations when detecting a fault like an “open” on a line. When an “open” is detected, the system will receive an interrupt. If the “open” on the line is persistent and the trigger is set to “edge”, upon “clearing” the interrupt, the system will not regenerate another interrupt. If, instead, the trigger is set to “level”, upon “clearing” the interrupt, the system will re-generate another interrupt. Thus, in this case, it will be better to set the trigger type to “edge”.
Example 2: Threshold detection
This example illustrates interrupt considerations when detecting an event like reaching or exceeding the “high watermark” threshold value. In a communication device, when the number of elements received in the FIFO reaches the high-watermark threshold, an interrupt will be generated. Normally, the application would read the count of the number of elements in the FIFO and read this number of elements from the FIFO. After reading the FIFO data, the application would “clear” the interrupt. If the trigger type is set to “edge”, another interrupt will be generated only if the number of elements in FIFO goes below the “high watermark” after the “clearing” the interrupt and then fills up to reach the “high watermark” threshold value. Since receiving communication data is inherently asynchronous, it is possible that data can continue to fill the FIFO as the application is pulling data off the FIFO. If, at the time the interrupt is “cleared”, the number of elements in the FIFO is at or above the “high watermark”, no interrupts will be generated. In this case, it will be better to set the trigger type to “level”, as the purpose here is to make sure that the FIFO is serviced when the number of elements exceeds the high watermark threshold value. Thus, upon “clearing” the interrupt, if the number of elements in the FIFO is at or above the “high watermark” threshold value, another interrupt will be generated indicating that the FIFO needs to be serviced.
Dynamic and Latched Status Registers Examples
The examples in this section illustrate the differences in behavior of the Dynamic Status and Latched Status registers as well as the differences in behavior of Edge/Level Trigger when the Latched Status register is cleared.
Figure 1. Example of Module’s Channel-Mapped Dynamic and Latched Status States
No Clearing of Latched Status |
Clearing of Latched Status (Edge-Triggered) |
Clearing of Latched Status (Level-Triggered) |
||||
Time |
Dynamic Status |
Latched Status |
Action |
Latched Status |
Action |
Latched |
T0 |
0x0 |
0x0 |
Read Latched Register |
0x0 |
Read Latched Register |
0x0 |
T1 |
0x1 |
0x1 |
Read Latched Register |
0x1 |
0x1 |
|
Write 0x1 to Latched Register |
Write 0x1 to Latched Register |
|||||
0x0 |
0x1 |
|||||
T2 |
0x0 |
0x1 |
Read Latched Register |
0x0 |
Read Latched Register |
0x1 |
Write 0x1 to Latched Register |
||||||
0x0 |
||||||
T3 |
0x2 |
0x3 |
Read Latched Register |
0x2 |
Read Latched Register |
0x2 |
Write 0x2 to Latched Register |
Write 0x2 to Latched Register |
|||||
0x0 |
0x2 |
|||||
T4 |
0x2 |
0x3 |
Read Latched Register |
0x1 |
Read Latched Register |
0x3 |
Write 0x1 to Latched Register |
Write 0x3 to Latched Register |
|||||
0x0 |
0x2 |
|||||
T5 |
0xC |
0xF |
Read Latched Register |
0xC |
Read Latched Register |
0xE |
Write 0xC to Latched Register |
Write 0xE to Latched Register |
|||||
0x0 |
0xC |
|||||
T6 |
0xC |
0xF |
Read Latched Register |
0x0 |
Read Latched |
0xC |
Write 0xC to Latched Register |
||||||
0xC |
||||||
T7 |
0x4 |
0xF |
Read Latched Register |
0x0 |
Read Latched Register |
0xC |
Write 0xC to Latched Register |
||||||
0x4 |
||||||
T8 |
0x4 |
0xF |
Read Latched Register |
0x0 |
Read Latched Register |
0x4 |
Interrupt Examples
The examples in this section illustrate the interrupt behavior with Edge/Level Trigger.
Figure 2. Illustration of Latched Status State for Module with 4-Channels with Interrupt Enabled
Time |
Latched Status (Edge-Triggered – Clear Multi-Channel) |
Latched Status (Edge-Triggered – Clear Single Channel) |
Latched Status (Level-Triggered – Clear Multi-Channel) |
|||
Action |
Latched |
Action |
Latched |
Action |
Latched |
|
T1 (Int 1) |
Interrupt Generated Read Latched Registers |
0x1 |
Interrupt Generated Read Latched Registers |
0x1 |
Interrupt Generated Read Latched Registers |
0x1 |
Write 0x1 to Latched Register |
Write 0x1 to Latched Register |
Write 0x1 to Latched Register |
||||
0x0 |
0x0 |
Interrupt re-triggers Note, interrupt re-triggers after each clear until T2. |
0x1 |
|||
T3 (Int 2) |
Interrupt Generated Read Latched Registers |
0x2 |
Interrupt Generated Read Latched Registers |
0x2 |
Interrupt Generated Read Latched Registers |
0x2 |
Write 0x2 to Latched Register |
Write 0x2 to Latched Register |
Write 0x2 to Latched Register |
||||
0x0 |
0x0 |
Interrupt re-triggers Note, interrupt re-triggers after each clear until T7. |
0x2 |
|||
T4 (Int 3) |
Interrupt Generated Read Latched Registers |
0x1 |
Interrupt Generated Read Latched Registers |
0x1 |
Interrupt Generated Read Latched Registers |
0x3 |
Write 0x1 to Latched Register |
Write 0x1 to Latched Register |
Write 0x3 to Latched Register |
||||
0x0 |
0x0 |
Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x3 is reported in Latched Register until T5. |
0x3 |
|||
Interrupt re-triggers Note, interrupt re-triggers after each clear until T7. |
0x2 |
|||||
T6 (Int 4) |
Interrupt Generated Read Latched Registers |
0xC |
Interrupt Generated Read Latched Registers |
0xC |
Interrupt Generated Read Latched Registers |
0xE |
Write 0xC to Latched Register |
Write 0x4 to Latched Register |
Write 0xE to Latched Register |
||||
0x0 |
Interrupt re-triggers Write 0x8 to Latched Register |
0x8 |
Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xE is reported in Latched Register until T7. |
0xE |
||
0x0 |
Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xC is reported in Latched Register until T8. |
0xC |
||||
Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x4 is reported in Latched Register always. |
0x4 |
MODULE COMMON REGISTERS
Edit this on GitLab
The registers described in this document are common to all NAI Generation 5 modules.
Module Information Registers
The registers in this section provide module information such as firmware revisions, capabilities and unique serial number information.
FPGA Version Registers
The FPGA firmware version registers include registers that contain the Revision, Compile Timestamp, SerDes Revision, Template Revision and Zynq Block Revision information.
FPGA Revision
Function: FPGA firmware revision
Type: unsigned binary word (32-bit)
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Value corresponding to the revision of the board’s FPGA
Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Major Revision Number |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Minor Revision Number |
FPGA Compile Timestamp
Function: Compile Timestamp for the FPGA firmware.
Type: unsigned binary word (32-bit)
Data Range: N/A
Read/Write: R
Initialized Value: Value corresponding to the compile timestamp of the board’s FPGA
Operational Settings: The 32-bit value represents the Day, Month, Year, Hour, Minutes and Seconds as formatted in the table:
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
day (5-bits) |
month (4-bits) |
year (6-bits) |
hr |
||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
hour (5-bits) |
minutes (6-bits) |
seconds (6-bits) |
FPGA SerDes Revision
Function: FPGA SerDes revision
Type: unsigned binary word (32-bit)
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Value corresponding to the SerDes revision of the board’s FPGA
Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Major Revision Number |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Minor Revision Number |
FPGA Template Revision
Function: FPGA Template revision
Type: unsigned binary word (32-bit)
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Value corresponding to the template revision of the board’s FPGA
Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Major Revision Number |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Minor Revision Number |
FPGA Zynq Block Revision
Function: FPGA Zynq Block revision
Type: unsigned binary word (32-bit)
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Value corresponding to the Zynq block revision of the board’s FPGA
Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Major Revision Number |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Minor Revision Number |
Bare Metal Version Registers
The Bare Metal firmware version registers include registers that contain the Revision and Compile Time information.
Bare Metal Revision
Function: Bare Metal firmware revision
Type: unsigned binary word (32-bit)
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Value corresponding to the revision of the board’s Bare Metal
Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Major Revision Number |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Minor Revision Number |
Bare Metal Compile Time
Function: Provides an ASCII representation of the Date/Time for the Bare Metal compile time.
Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)
Data Range: N/A
Read/Write: R
Initialized Value: Value corresponding to the ASCII representation of the compile time of the board’s Bare Metal
Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time. The hexadecimal values in the field below represent: May 17 2019 at 15:38:32
Word 1 (Ex. 0x2079614D) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Space (0x20) |
Month ('y' - 0x79) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Month ('a' - 0x61) |
Month ('M' - 0x4D) |
||||||||||||||
Word 2 (Ex. 0x32203731) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Year ('2' - 0x32) |
Space (0x20) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Day ('7' - 0x37) |
Day ('1' - 0x31) |
||||||||||||||
Word 3 (Ex. 0x20393130) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Space (0x20) |
Year ('9' - 0x39) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Year ('1' - 0x31) |
Year ('0' - 0x30) |
||||||||||||||
Word 4 (Ex. 0x31207461) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Hour ('1' - 0x31) |
Space (0x20) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
'a' (0x74) |
't' (0x61) |
||||||||||||||
Word 5 (Ex. 0x38333A35) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Minute ('8' - 0x38) |
Minute ('3' - 0x33) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
':' (0x3A) |
Hour ('5' - 0x35) |
||||||||||||||
Word 6 (Ex. 0x0032333A) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
NULL (0x00) |
Seconds ('2' - 0x32) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Seconds ('3' - 0x33) |
':' (0x3A) |
FSBL Version Registers
The FSBL version registers include registers that contain the Revision and Compile Time information for the First Stage Boot Loader (FSBL).
FSBL Revision
Function: FSBL firmware revision
Type: unsigned binary word (32-bit)
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Value corresponding to the revision of the board’s FSBL
Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Major Revision Number |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Minor Revision Number |
FSBL Compile Time
Function: Provides an ASCII representation of the Date/Time for the FSBL compile time.
Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)
Data Range: N/A
Read/Write: R
Initialized Value: Value corresponding to the ASCII representation of the Compile Time of the board’s FSBL
Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time.
The hexadecimal values in the field below represent: May 17 2019 at 15:38:32
Word 1 (Ex. 0x2079614D) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Space (0x20) |
Month ('y' - 0x79) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Month ('a' - 0x61) |
Month ('M' - 0x4D) |
||||||||||||||
Word 2 (Ex. 0x32203731) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Year ('2' - 0x32) |
Space (0x20) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Day ('7' - 0x37) |
Day ('1' - 0x31) |
||||||||||||||
Word 3 (Ex. 0x20393130) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Space (0x20) |
Year ('9' - 0x39) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Year ('1' - 0x31) |
Year ('0' - 0x30) |
||||||||||||||
Word 4 (Ex. 0x31207461) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Hour ('1' - 0x31) |
Space (0x20) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
'a' (0x74) |
't' (0x61) |
||||||||||||||
Word 5 (Ex. 0x38333A35) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Minute ('8' - 0x38) |
Minute ('3' - 0x33) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
':' (0x3A) |
Hour ('5' - 0x35) |
||||||||||||||
Word 6 (Ex. 0x0032333A) |
|||||||||||||||
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
NULL (0x00) |
Seconds ('2' - 0x32) |
||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Seconds ('3' - 0x33) |
':' (0x3A) |
Module Serial Number Registers
The Module Serial Number registers include registers that contain the Serial Numbers for the Interface Board and the Functional Board of the module.
Interface Board Serial Number
Function: Unique 128-bit identifier used to identify the interface board.
Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)
Data Range: N/A
Read/Write: R
Initialized Value: Serial number of the interface board
Operational Settings: This register is for information purposes only.
Functional Board Serial Number
Function: Unique 128-bit identifier used to identify the functional board.
Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)
Data Range: N/A
Read/Write: R
Initialized Value: Serial number of the functional board
Operational Settings: This register is for information purposes only.
Module Capability
Function: Provides indication for whether or not the module can support the following: SerDes block reads, SerDes FIFO block reads, SerDes packing (combining two 16-bit values into one 32-bit value) and floating point representation. The purpose for block access and packing is to improve the performance of accessing larger amounts of data over the SerDes interface.
Type: unsigned binary word (32-bit)
Data Range: 0x0000 0000 to 0x0000 0107
Read/Write: R
Initialized Value: 0x0000 0107
Operational Settings: A “1” in the bit associated with the capability indicates that it is supported.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Flt-Pt |
0 |
0 |
0 |
0 |
0 |
Pack |
FIFO Blk |
Blk |
Module Memory Map Revision
Function: Module Memory Map revision
Type: unsigned binary word (32-bit)
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Value corresponding to the Module Memory Map Revision
Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Major Revision Number |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Minor Revision Number |
Module Measurement Registers
The registers in this section provide module temperature measurement information.
Temperature Readings Registers
The temperature registers provide the current, maximum (from power-up) and minimum (from power-up) Zynq and PCB temperatures.
Interface Board Current Temperature
Function: Measured PCB and Zynq Core temperatures on Interface Board.
Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures
Data Range: 0x0000 0000 to 0x0000 FFFF
Read/Write: R
Initialized Value: Value corresponding to the measured PCB and Zynq core temperatures based on the table below
Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 202C, this represents PCB Temperature = 32° Celsius and Zynq Temperature = 44° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
PCB Temperature |
Zynq Core Temperature |
Functional Board Current Temperature
Function: Measured PCB temperature on Functional Board.
Type: signed byte (8-bits) for PCB
Data Range: 0x0000 0000 to 0x0000 00FF
Read/Write: R
Initialized Value: Value corresponding to the measured PCB on the table below
Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0019, this represents PCB Temperature = 25° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
PCB Temperature |
Interface Board Maximum Temperature
Function: Maximum PCB and Zynq Core temperatures on Interface Board since power-on.
Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures
Data Range: 0x0000 0000 to 0x0000 FFFF
Read/Write: R
Initialized Value: Value corresponding to the maximum measured PCB and Zynq core temperatures since power-on based on the table below
Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the maximum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 5569, this represents maximum PCB Temperature = 85° Celsius and maximum Zynq Temperature = 105° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
PCB Temperature |
Zynq Core Temperature |
Interface Board Minimum Temperature
Function: Minimum PCB and Zynq Core temperatures on Interface Board since power-on.
Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures
Data Range: 0x0000 0000 to 0x0000 FFFF
Read/Write: R
Initialized Value: Value corresponding to the minimum measured PCB and Zynq core temperatures since power-on based on the table below
Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the minimum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 D8E7, this represents minimum PCB Temperature = -40° Celsius and minimum Zynq Temperature = -25° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
PCB Temperature |
Zynq Core Temperature |
Functional Board Maximum Temperature
Function: Maximum PCB temperature on Functional Board since power-on.
Type: signed byte (8-bits) for PCB
Data Range: 0x0000 0000 to 0x0000 00FF
Read/Write: R
Initialized Value: Value corresponding to the measured PCB on the table below
Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0055, this represents PCB Temperature = 85° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
PCB Temperature |
Functional Board Minimum Temperature
Function: Minimum PCB temperature on Functional Board since power-on.
Type: signed byte (8-bits) for PCB
Data Range: 0x0000 0000 to 0x0000 00FF
Read/Write: R
Initialized Value: Value corresponding to the measured PCB on the table below
Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 00D8, this represents PCB Temperature = -40° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
PCB Temperature |
Higher Precision Temperature Readings Registers
These registers provide higher precision readings of the current Zynq and PCB temperatures.
Higher Precision Zynq Core Temperature
Function: Higher precision measured Zynq Core temperature on Interface Board.
Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Measured Zynq Core temperature on Interface Board
Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x002B 0271, this represents Zynq Core Temperature = 43.625° Celsius, and value 0xFFF6 0177 represents -10.375° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Signed Integer Part of Temperature |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Fractional Part of Temperature |
Higher Precision Interface PCB Temperature
Function: Higher precision measured Interface PCB temperature.
Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Measured Interface PCB temperature
Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x0020 007D, this represents Interface PCB Temperature = 32.125° Celsius, and value 0xFFE8 036B represents -24.875° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Signed Integer Part of Temperature |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Fractional Part of Temperature |
Higher Precision Functional PCB Temperature
Function: Higher precision measured Functional PCB temperature.
Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part
Data Range: 0x0000 0000 to 0xFFFF FFFF
Read/Write: R
Initialized Value: Measured Functional PCB temperature
Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/100 of degree Celsius. For example, if the register contains the value 0x0018 004B, this represents Functional PCB Temperature = 24.75° Celsius, and value 0xFFD9 0019 represents -39.25° Celsius.
D31 |
D30 |
D29 |
D28 |
D27 |
D26 |
D25 |
D24 |
D23 |
D22 |
D21 |
D20 |
D19 |
D18 |
D17 |
D16 |
Signed Integer Part of Temperature |
|||||||||||||||
D15 |
D14 |
D13 |
D12 |
D11 |
D10 |
D9 |
D8 |
D7 |
D6 |
D5 |
D4 |
D3 |
D2 |
D1 |
D0 |
Fractional Part of Temperature |
Module Health Monitoring Registers
The registers in this section provide module temperature measurement information. If the temperature measurements reaches the Lower Critical or Upper Critical conditions, the module will automatically reset itself to prevent damage to the hardware.
Module Sensor Summary Status
Function: The corresponding sensor bit is set if the sensor has crossed any of its thresholds.
Type: unsigned binary word (32-bits)
Data Range: See table below
Read/Write: R
Initialized Value: 0
Operational Settings: This register provides a summary for module sensors. When the corresponding sensor bit is set, the Sensor Threshold Status register for that sensor will indicate the threshold condition that triggered the event.
Bit(s) |
Sensor |
D31:D6 |
Reserved |
D5 |
Functional Board PCB Temperature |
D4 |
Interface Board PCB Temperature |
D3:D0 |
Reserved |
Module Sensor Registers
The registers listed in this section apply to each module sensor listed for the Module Sensor Summary Status register. Each individual sensor register provides a group of registers for monitoring module temperatures readings. From these registers, a user can read the current temperature of the sensor in addition to the minimum and maximum temperature readings since power-up. Upper and lower critical/warning temperature thresholds can be set and monitored from these registers. When a programmed temperature threshold is crossed, the Sensor Threshold Status register will set the corresponding bit for that threshold. The figure below shows the functionality of this group of registers when accessing the Interface Board PCB Temperature sensor as an example.
Sensor Threshold Status
Function: Reflects which threshold has been crossed
Type: unsigned binary word (32-bits)
Data Range: See table below
Read/Write: R
Initialized Value: 0
Operational Settings: The associated bit is set when the sensor reading exceed the corresponding threshold settings.
Bit(s) |
Description |
D31:D4 |
Reserved |
D3 |
Exceeded Upper Critical Threshold |
D2 |
Exceeded Upper Warning Threshold |
D1 |
Exceeded Lower Critical Threshold |
D0 |
Exceeded Lower Warning Threshold |
Sensor Current Reading
Function: Reflects current reading of temperature sensor
Type: Single Precision Floating Point Value (IEEE-754)
Data Range: Single Precision Floating Point Value (IEEE-754)
Read/Write: R
Initialized Value: N/A
Operational Settings: The register represents current sensor reading as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.
Sensor Minimum Reading
Function: Reflects minimum value of temperature sensor since power up
Type: Single Precision Floating Point Value (IEEE-754)
Data Range: Single Precision Floating Point Value (IEEE-754)
Read/Write: R
Initialized Value: N/A
Operational Settings: The register represents minimum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.
Sensor Maximum Reading
Function: Reflects maximum value of temperature sensor since power up
Type: Single Precision Floating Point Value (IEEE-754)
Data Range: Single Precision Floating Point Value (IEEE-754)
Read/Write: R
Initialized Value: N/A
Operational Settings: The register represents maximum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.
Sensor Lower Warning Threshold
Function: Reflects lower warning threshold of temperature sensor
Type: Single Precision Floating Point Value (IEEE-754)
Data Range: Single Precision Floating Point Value (IEEE-754)
Read/Write: R/W
Initialized Value: Default lower warning threshold (value dependent on specific sensor)
Operational Settings: The register represents sensor lower warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC220 0000 represents temperature = -40.0° Celsius.
Sensor Lower Critical Threshold
Function: Reflects lower critical threshold of temperature sensor
Type: Single Precision Floating Point Value (IEEE-754)
Data Range: Single Precision Floating Point Value (IEEE-754)
Read/Write: R/W
Initialized Value: Default lower critical threshold (value dependent on specific sensor)
Operational Settings: The register represents sensor lower critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC25C 0000 represents temperature = -55.0° Celsius.
Sensor Upper Warning Threshold
Function: Reflects upper warning threshold of temperature sensor
Type: Single Precision Floating Point Value (IEEE-754)
Data Range: Single Precision Floating Point Value (IEEE-754)
Read/Write: R/W
Initialized Value: Default upper warning threshold (value dependent on specific sensor)
Operational Settings: The register represents sensor upper warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42AA 0000 represents temperature = 85.0° Celsius.
Sensor Upper Critical Threshold
Function: Reflects upper critical threshold of temperature sensor
Type: Single Precision Floating Point Value (IEEE-754)
Data Range: Single Precision Floating Point Value (IEEE-754)
Read/Write: R/W
Initialized Value: Default upper critical threshold (value dependent on specific sensor)
Operational Settings: The register represents sensor upper critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42FA 0000 represents temperature = 125.0° Celsius.
FUNCTION REGISTER MAP
Key
Bold Underline |
= Measurement/Status/Board Information |
Bold Italic |
= Configuration/Control |
Module Information Registers
0x003C |
FPGA Revision |
R |
0x0030 |
FPGA Compile Timestamp |
R |
0x0034 |
FPGA SerDes Revision |
R |
0x0038 |
FPGA Template Revision |
R |
0x0040 |
FPGA Zynq Block Revision |
R |
0x0074 |
Bare Metal Revision |
R |
0x0080 |
Bare Metal Compile Time (Bit 0-31) |
R |
0x0084 |
Bare Metal Compile Time (Bit 32-63) |
R |
0x0088 |
Bare Metal Compile Time (Bit 64-95) |
R |
0x008C |
Bare Metal Compile Time (Bit 96-127) |
R |
0x0090 |
Bare Metal Compile Time (Bit 128-159) |
R |
0x0094 |
Bare Metal Compile Time (Bit 160-191) |
R |
0x007C |
FSBL Revision |
R |
0x00B0 |
FSBL Compile Time (Bit 0-31) |
R |
0x00B4 |
FSBL Compile Time (Bit 32-63) |
R |
0x00B8 |
FSBL Compile Time (Bit 64-95) |
R |
0x00BC |
FSBL Compile Time (Bit 96-127) |
R |
0x00C0 |
FSBL Compile Time (Bit 128-159) |
R |
0x00C4 |
FSBL Compile Time (Bit 160-191) |
R |
0x0000 |
Interface Board Serial Number (Bit 0-31) |
R |
0x0004 |
Interface Board Serial Number (Bit 32-63) |
R |
0x0008 |
Interface Board Serial Number (Bit 64-95) |
R |
0x000C |
Interface Board Serial Number (Bit 96-127) |
R |
0x0010 |
Functional Board Serial Number (Bit 0-31) |
R |
0x0014 |
Functional Board Serial Number (Bit 32-63) |
R |
0x0018 |
Functional Board Serial Number (Bit 64-95) |
R |
0x001C |
Functional Board Serial Number (Bit 96-127) |
R |
0x0070 |
Module Capability |
R |
0x01FC |
Module Memory Map Revision |
R |
Module Measurement Registers
0x0200 |
Interface Board PCB/Zynq Current Temperature |
R |
0x0208 |
Functional Board PCB Current Temperature |
R |
0x0218 |
Interface Board PCB/Zynq Max Temperature |
R |
0x0228 |
Interface Board PCB/Zynq Min Temperature |
R |
0x0218 |
Functional Board PCB Max Temperature |
R |
0x0228 |
Functional Board PCB Min Temperature |
R |
0x02C0 |
Higher Precision Zynq Core Temperature |
R |
0x02C4 |
Higher Precision Interface PCB Temperature |
R |
0x02E0 |
Higher Precision Functional PCB Temperature |
R |