Integrator Resources

The official home for NAI Support

Not sure where to start? Try Quick Start Guide or ask a question below!

Toggle Components with Visual Button
JavaScript Form Processing

12-Channel Sigma-Delta ADC

INTRODUCTION

As a leading manufacturer of smart function modules, NAI offers over 100 different modules that cover a wide range of I/O, measurement and simulation, communications, Ethernet switch, and SBC functions. Our Analog-to-Digital (A/D) smart function modules provide fast, accurate, and reliable conversion performance that is ideally suited for military, industrial, and commercial applications. With nine different A/D smart function modules to choose from, our products offer a variety of A/D converters with different available channels, architecture types, and sampling rates to meet your specific circuit design needs. This user manual is designed to help you get the most out of our A/D smart function modules.

AD1-AD3 Overview

NAI’s Analog-to-Digital modules AD1, AD2,and AD3 are high-performance smart function modules designed for use in military, industrial, and commercial applications. These modules feature 12 channels with up to 24-bit Sigma-Delta A/D converters. The maximum programmable, expected full-scale range input for the modules is ±10V (AD1), ±100V (AD2), and ±25 mA (AD3).

The A/D converters have programmable sample rates of up to 256 kHz. The input range and gain are also field-programmable for each channel, with the ability to set lower expected, full-scale voltage gain ranges to assure the use of full resolution. Each channel includes a fixed, second order, anti-aliasing filter and a digital post filter with a programmable breakpoint that enables users to field-adjust the filtering for each channel.

The extended A/D FIFO buffering capabilities of these modules support greater storage/management of the incoming signal samples (data) for post-processing applications. Data samples can be stored in the buffer either at the maximum programmed base A/D sample rate or by an integer-divided sample rate, with programmable FIFO buffer thresholds maximizing data flow control (movement in and out of the FIFO). Incremental relative time-stamping between samples is also provided as a programmable option.

All A/D channels are self-aligning and continuous Background Built-in-Test (BIT) status is provided for channel health and operation feedback. On a rotating basis, each channel is automatically trimmed/tested for optimal conversion and reliability to eliminate offset and gain errors throughout the entire operating envelope (temperature and drift control). Open inputs are sensed and flagged, making these smart function modules an ideal choice for precise and reliable data acquisition and signal processing in a wide range of applications.

PRINCIPLE OF OPERATION

Analog-to-Digital modules AD1, AD2 and AD3 are 12-channel, A/D converters. Each module contains 12, 24-Bit, Sigma-Delta A/D converters; one for each channel and an additional one for BIT. The modules provide up to 12 differential A/D channels. Inputs may be bipolar or unipolar voltages. Ranges for each module are shown below. Module AD1 will sense and report unconnected inputs. Modules AD2 and AD3 will NOT sense nor report unconnected inputs.

Module

AD1

AD2

AD3

Full Scale Range Inputs*

10.0V

100.0V

±25mA

5.0

50V

2.5V

25V

1.25V

12.5V

*Programmable, per channel, as Full Scale (FS) range inputs, where range is -FS to +FS or 0 to FS VDC. The ability to set lower voltages for FS assures the utilization of the maximum resolution.

The sample rate is programmable up to 256 kHz. Each differential channel includes an anti-aliasing filter follow by a digital “brick wall" filter and a digital second order IIR low-pass filter with a programmable breakpoint that enables user to field-adjust the filtering for each channel. The input range is field programmable for each channel. The ability to set lower voltages for Full Scale Input assures maximum resolution. All inputs are double buffered for immediate data availability. The “Latch" feature permits the user to read all A/D channels at the same time.

The module provides bipolar outputs in two-s complement with a range from 0xFF80 0000 (maximum negative) to 0x007F FFFF (maximum positive). Unipolar output range is from 0x0000 0000 to 0x00FF FFFF (FS).

Built-In Test (BIT)/Diagnostic Capability

The AD module supports three types of built-in tests: Power-On, Continuous Background and Initiated. The results of these tests are logically OR’d together and stored in the BIT Dynamic Status and BIT Latched Status registers.

In addition to BIT, the AD module tests for loss of +12V and -12V power, and inter-FPGA data transfer errors between the Lattice FPGA and Xilinx FPGA. On the AD1 module, the module tests for Open/Over-voltage conditions on the positive and negative connections. On the AD2 and AD3 module, the module continually tests the channel’s Front-end Amplifier to ensure it is working properly. On the AD3, the module tests for overcurrent conditions.

Power-On Self-Test (POST)/Power-On BIT (PBIT)/Start-Up BIT (SBIT)

The power-on self-test is performed on each channel automatically when power is applied and report the results in the BIT Status register when complete. After power-on, the Power-on BIT Complete register should be checked to ensure that POST/PBIT/SBIT test is complete before reading the BIT Dynamic Status and BIT Latched Status registers.

Continuous Background Built-In Test

The background Built-In-Test or Continuous BIT (CBIT) (“D2") runs in the background where each channel is checked to a test accuracy of 0.2% FS. The testing is totally transparent to the user, requires no external programming, and has no effect on the operation of the module or card. For the AD1 module, all channels are monitored for open input during the CBIT test. Every second, the module will write 55h to the Test CBIT Verify register. User can periodically clear to 00h and then read Test CBIT Verify register again, after 1 second, to verify that background BIT testing is activated.

The technique used by the CBIT test consists of an “add-2, subtract-1" counting scheme. The BIT counter is incremented by 2 when a BIT-fault is detected and decremented by 1 when there is no BIT fault detected and the BIT counter is greater than 0. When the BIT counter exceeds the (programmed) Background BIT Threshold value, the specific channel’s fault bit in the BIT status register will be set. Note, the interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a “count", the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold “count" based on the BIT interval for that module. The “add-2, subtract-1" counting scheme effectively filters momentary or intermittent anomalies by allowing them to “come and go“ before a BIT fault status or indication is flagged. This prevents spurious faults from registering valid such as those caused by EMI and/or dirty power causing false BIT faults. Putting more “weight" on errors (“add-2") and less “weight" on subsequent passing results (subtract-1) will result in a BIT failure indication even if a channel “oscillates" between a pass and fail state.

Initiated Built-In Test

The AD module supports two off-line Initiated Built-in Test, User Initiated BIT (UBIT) (“D0") and Initiated BIT (IBIT) (“D3").

UBIT test is used to check the card and interface. This test disconnects all A/D channels from the I/O and connects them across an internal D/A.

Test voltage is controlled by the user by setting the desired voltage in the UBIT Test Data register. While UBIT test is enabled, the A/D Reading register will reflect the value entered for the test voltage. Note the units of the A/D Reading may represent voltage, current or engineering units depending on the mode specified by setting the Enable Floating Point Mode register.

IBIT test starts an initiated BIT test that disconnects all A/D’s from the I/O and then connects them across an internal stimulus. Each channel will be checked to a test accuracy of 0.2% FS and monitored for open inputs. The IBIT test cycle is completed within 20 seconds (depending on the sample rate) and results can be read from the BIT Status registers after the IBIT bit changes from 1 to 0 indicating that the IBIT test is complete. The test can be enabled or disabled at any time by writing to the appropriate register.

A/D FIFO Buffering

The Analog-to-Digital modules include A/D FIFO Buffering for greater control of the incoming signal (data) for analysis and display. When initialized and triggered, the A/D buffer will accept/store the data based on the same Sample Rate register combined with the number of active channels, or at a lower rate when utilizing the FIFO Skip Count feature. Programmable buffer sample thresholds can be utilized for data flow control.

Threshold and Saturation Programming

The Analog-to-Digital Modules provide registers that support threshold and saturation detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual" for the Principle of Operation description.

Status and Interrupts

The Analog-to-Digital Modules provide registers that indicate faults or events. Refer to “Status and Interrupts Module Manual" for the Principle of Operation description.

Module Common Registers

The Analog-to-Digital Modules include module common registers that provide access to module-level bare metal/FPGA revisions & compile times, unique serial number information, and temperature/voltage/current monitoring. Refer to “Module Common Registers Module Manual" for the detailed information.

Engineering Scaling Conversions

The A/D Module Threshold, Saturation and Measurement registers can be programmed to be utilized as single precision floating point values (IEEE-754) or as 32-bit integer values.

It is very often necessary to convert a voltage or current reading into a more usefule value such as PSI (Pounds per Square Inch), GPM (Gallons per Minute), LBS (pounds), etc. For example, when measuring force, it would be more beneficial to read the data as LBS (pounds) instead of volts. Other examples would be reading the data as PSI for pressure or GPM for flow. When the Enable Floating Point Mode register is set to 1, the values entered for the Floating Point Scale register and Floating Point Offset register will be used to convert the current or voltage measurement (i.e., A/D Reading and FIFO Buffer Data registers) to the associated engineering unit as follows:

AD Data in Engineering Units (Floating Point) =
                    (AD Value (Volts/Current) * Floating Point Scale) + Floating Point Offset

The purpose for providing this feature is to offload the processing that is normally performed by the mission processor to convert the integer values to engineering unit values.

When the Enable Floating Point Mode register is set to 1 (Floating Point Mode) the following registers are formatted as Single Precision Floating Point Value (IEEE-754):

  • A/D Reading

  • FIFO Buffer Data

  • Threshold Detect Level*

  • Upper and Lower Saturation*

*When the Enable Floating Point Mode register is set to 1, it is important that these registers are updated with the Single Precision Floating Point (IEEE-754) representation of the value for proper operation of the channel. Conversely, when the Enable Floating Point Mode register is set to 0, these registers must be updated with the Integer 32-bit representation of the value.

Note
when changing the Enable Floating Point Mode from Integer Mode to Floating Point Mode or vice versa, the following steps are followed to avoid faults from falsely being generated:
  1. Set the Enable Floating Point Mode register to the desired mode (Integer or Floating Point).

  2. The application waits for the Floating Point State register to match the value for the requested Floating Point Mode (Integer = 0, Floating Point = 1); this indicates that the module’s conversion of the register values nd internal values is complete. Data registers will be converted to the units specified and can be read in that specified format.

REGISTER DESCRIPTIONS

The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, a description of the function and, in most cases, a data table.

A/D Measurement Registers

The A/D readings are normally in terms of voltage or current. When the Enable Floating Point Mode is enabled, the register value formatted as Single Precision Floating Point Value (IEEE-754), in addition the Floating Point Scale and Floating Point Offset will be applied to convert the voltage or current to engineering units.

A/D Reading

Function: The value represents voltage, current or engineering units depending on mode.

Type: signed binary word (32-bit) (Integer Mode) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Values are dependent on Polarity and Range settings for the channel

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: 0x0000 0000 to 0x00FF FFFF

Bipolar (2’s complement. 24-bit value sign extended to 32 bits): 0xFF80 0000 to 0x007F FFFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

A/D Control Registers

The A/D control registers provide the ability to specify the polarity and range, the sample rate and the filter break frequency. The A/D Latch control register provides the ability to latch any of the A/D channels to the current sample capture.

Polarity & Range

Function: Sets input format for polarity and range for each channel. Note, if the Enable Floating Point Mode register is set to 1, the Floating Point Scale register must be set to the Range.

Type: unsigned binary word (32-bit)

Data Range: See table below.

Read/Write: R/W

Initialized Value: 0x0000 0010 (AD1: ± 10 V, AD2: ± 100 V, AD3: ± 25 mA)

Operational Settings: For bipolar/unipolar selection, program D4 bit as 0 for unipolar and 1 for bipolar as shown in table below.

Table 1. Polarity and Range

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

D

D

D

D

D

Range

Reg Value

AD1

AD2

AD3

0x03

0 - 1.25 V

0 - 12.5 V

N/A

0x02

0 - 2.5 V

0 - 25 V

N/A

0x01

0 - 5 V

0 - 50 V

N/A

0x00

0 - 10 V

0 - 100 V

N/A

0x13

± 1.25 V

± 12.5 V

N/A

0x12

± 2.5 V

± 25 V

N/A

0x11

± 5 V

± 50 V

N/A

0x10

± 10 V

± 100 V

± 25 mA

Sample Rate

Function: Sets the desired sample rate for all channels.

Type: unsigned binary word (32-bit)

Data Range: 1000 - 256000 (0x0000 03E8 to 0x0003 E800)

Read/Write: R/W

Initialized Value: 100000 (0x0001 86A0)

Operational Settings: Enter desired frequency for each channel between 10 Hz to 115.2 kHz as a 32-bit binary number (1 Hz LSB). The break frequency must not be less than 1% of the sample rate nor greater than 45% of the sample rate. For a sample rate of 2 kHz, the File Break Frequency should be no less than 20 Hz and no greater than 0.9 kHz. 0 disables filter.

Filter Break Frequency

Function: The break frequency is the 3 dB point of a digital, second-order, IIR low-pass filter.

Type: unsigned binary word (32-bit)

Data Range: 0 Hz to 115.2 kHz (0x0000 0000 to 0x0001 C200)

Read/Write: R/W

Initialized Value: AD1: 0 kHz (0x0000 0000), AD2: 20 kHz (0x0000 4E20), AD3: 1 kHz (0x0000 03E8)

Operational Settings: LSB is 1 Hz. The break frequency must not be less than 1% of the clock rate frequency. (Example: For a clock rate frequency of 2 kHz, the Filter Break Frequency should be no less than 20 Hz and no greater than 0.9 kHz). Set to 0 to disables filter.

Acquisition/Conversion Time

Acquisition Time: 3.9 µs required to sample and hold input

Conversion Time: total time required to obtain digital result. It consists of acquisition, decimator group delay when engaged and IIR filter.

ad1 ad3 img2

Conversion time will vary depending on sample rates. 4.4µs delay when sampling at 256kHz. Refer to the following chart for lower sample rates:

ad1 ad3 img3

Latch All A/D Channels

Function: Latches all A/D channels.

Type: unsigned binary word (32-bit)

Data Range: 0 to 1

Read/Write: R/W

Initialized Value: 0

Operational Settings: Set 1 to latch all A/D channels and 0 to unlatch all A/D channels.

Note
The channel’s A/D Reading register will maintain the same reading while the Latch A/D bit is set to 1. Sampling for the channel will resume for that channel only when the bit is set to 0.

A/D Test Registers

Three different tests, one on-line (CBIT) and two off-line (UBIT, IBIT), can be selected. External reference voltage is not required for any of these tests.

Test Enabled

Function: Sets bit to enable the associated Built-In Self-Test (BIST): IBIT, CBIT and UBIT.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 000F

Read/Write: R/W

Initialized Value: 0x4 (CBIT Test Enabled)

Operational Settings: BIT tests include an on-line (CBIT) test and two off-line (UBIT, IBIT) tests. Failures in the BIT test are reflected in the BIT Status registers for the corresponding channels that fail. In addition, an interrupt (if enabled in the BIT Interrupt Enable register) can be triggers when the BIT testing detects failures.

Table 2. Test Enabled

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

IBIT Test D

CBIT Test 1

0

UBIT Test D

Test CBIT Verify

Function: The module will write 55h in the Test CBIT Verify register during the on-line (CBIT) test (maximum one second).

Type: unsigned binary word (32-bit)

Data Range: 0x00 or 0x55

Read/Write: R/W

Initialized Value: 0x00

Operational Settings: User can clear to 00h and then read again, after approximately one second, to verify that background bit testing is activated.

UBIT Test Data

Function: Specifies voltage to be applied for the A/D UBIT off-line test.

Type: signed binary word (32-bit)

Data Range: Voltage and Current values are dependent on Polarity and Range settings for the channel.

Unipolar: 0x0000 to 0x00FF FFFF

Bipolar (2’s complement. 24-bit value sign extended to 32 bits): 0xFF80 0000 to 0x007F FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: LSB is dependent on the Range setting. Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

UBIT Polarity

Function: Specifies polarity of the test generator going into all channels.

Type: binary word (32-bit)

Data Range: 0x0000 0000 or 0x0000 0010

Read/Write: R/W

Initialized Value: 0x0000 0000

Operational Settings: Write 0 to D4 of register to set channels for unipolar. Write 1 to set all channels for bipolar.

Default: Unipolar

FIFO Registers

The FIFO registers are configurable for each channel.

FIFO Buffer Data

Function: Available data in the FIFO buffer can be retrieved, one word at a time. (LSB for 24-bit word resolution is dependent on the Polarity and Range setting).

Type:

Voltage (AD1, AD2) or Current (AD3): signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Timestamp (sample counter): unsigned binary word (32-bit)

Data Range:

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: 0x0000 0000 to 0x00FF FFFF

Bipolar (2’s complement. 24-bit value sign extended to 32 bits): 0xFF80 0000 to 0x007F FFFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

FIFO Word Count

Function: This is a counter that reports the number of 24-bit words stored in the FIFO buffer.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R

Initialized Value: 0

Operational Settings: Every time a read operation is made from the A/D Data memory address, its corresponding Words in FIFO counter will be decremented by one. The maximum number of words that can be stored in the FIFO is 1 mega words.

FIFO Thresholds

The FIFO Almost Empty, FIFO Low Watermark, FIFO High Watermark, FIFO Almost Full and FIFO Buffer Size sets the threshold limits that are used to set the bits in the FIFO Status register.

FIFO Almost Empty

Function: The FIFO Almost Empty is used to set the limits for the “almost empty" status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: When the Words in FIFO counter is greater than or equal to the value stored in the FIFO Almost Empty register, the “almost empty" bit (D1) of the FIFO Status register will be set. When the Words in FIFO counter is less than the value stored in the register, the “almost empty" bit (D1) of the FIFO Status register will be reset.

FIFO Low Watermark

Function: The FIFO Low Watermark (low-threshold level) is used to set the limits for the “low watermark" status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: When the Words in FIFO counter is less than or equal to the value stored in the FIFO Low Watermark register, the “low watermark" bit (D2) of the FIFO Status register will be set. When the Words in FIFO counter is greater than the value stored in the register, the “low watermark" bit (D2) of the FIFO Status register will be reset.

FIFO High Watermark

Function: The FIFO High Watermark (high-threshold level) is used to set the limits for the “high watermark" status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: When the Words in FIFO counter is greater than or equal to the value stored in the FIFO High Watermark register, the “high watermark" bit (D3) of the FIFO Status register will be set. When the Words in FIFO counter is less than the value stored in the high threshold, the “high watermark" bit (D3) of the FIFO Status register will be reset.

FIFO Almost Full

Function: The FIFO Almost Full is used to set the limits for the “almost full" status.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: When the Words in FIFO counter is greater than or equal to the value stored in the FIFO Almost Full register, the “almost full" bit (D4) of the FIFO Status register will be set. When the Words in FIFO counter is less than the value stored in the register, the “almost full" bit (D4) of the FIFO Status register will be reset.

FIFO Buffer Size

Function: Sets the number of samples to be taken and placed into the FIFO when a trigger occurs.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x000F FFFF

Read/Write: R/W

Initialized Value: 0x000F FFFF

Operational Settings: The size of each sample (number of words written to the FIFO per sample) is determined by the sample format described by the FIFO Buffer Control register. When the Words in FIFO counter reaches the FIFO Buffer Size, the “sample done" bit (D6) is set and no additional samples will be placed in the FIFO. When Words in FIFO counter is less than FIFO Buffer Size, the “sample done" bit (D6) will be reset.

Data Control

Function: Sets the format of the samples to be stored in the FIFO buffer which is determined by the bitmapped table.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0014

Read/Write: R/W

Initialized Value: 0

Operational Settings: The Time Stamp data format (D4) requires one word of storage space from the FIFO buffer. For example, if (D4) is set to 0 and the FIFO Buffer Size register is set to 1, a FIFO write will put one word of data in the FIFO memory space per sample and discard the timestamp (sample counter). Since the maximum physical size of FIFO is 1M words for each channel, the value in the FIFO Buffer Size and Data Control registers could cause an overflow to the FIFO buffer. When an overflow condition occurs, any data that is not placed in the FIFO will be lost.

D31-D5

Reserved. Set to 0

D4

Time Stamp. An integer counter that counts from 0 to 65,535 and wraps around when it overflows.

D3

Reserved. Set to 0

D2

Data Type. 0 = Raw (unfiltered); 1 = Filtered (post-programmable IIR).

D1

Reserved. Set to 0

D0

Reserved. Set to 0

Table 3. Data Control

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

D

0

D

0

0

FIFO Sample Delay

Function: Sets the number of delay samples before the actual FIFO data collection begins.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0x0

Operational Settings: The data collected during the delay period will be discarded.

FIFO Skip Count

Function: Sets how many samples to skip over when storing data in FIFO.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0 (No Skip Count (FIFO stores every sample))

Operational Settings: If the sample rate for a channel is 10 kHz, there would be a new sample every 100µs. By setting the FIFO skip count to 1, the FIFO will store a new sample every 200 µs, or at a 5 kHz rate.

Clear FIFO

Function: Clears FIFO by resetting the Words in FIFO count.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0x0

Operational Settings: This resets the Words in FIFO to zero; Clear FIFO register does not clear data in the buffer. A read to the buffer data will give “aged" data. Write a 1 to reset the Words in FIFO for the channel.

Table 4. Clear FIFO

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Reset FIFO Timestamp

Function: Resets the FIFO Timestamp counters (sample counters) for all channels.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0x0

Operational Settings: Write a 1 to reset the FIFO Timestamp value.

Table 5. Reset FIFO Timestamp

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

FIFO Trigger Control

Function: Starts/triggers FIFO. FIFO can be started/triggered by different sources.

Type: unsigned binary word (32-bit)

Data Range: 0x0 to 0x1FF

Read/Write: R/W

Initialized Value: 0 (Disable Trigger)

Operational Settings: For the current implementation, triggering of FIFO is by Software Trigger only. Hardware triggering will be implemented in a future release. Hardware triggering will be platform dependent based on pin-outs and I/O availability. See the tables that follow for the current and pending settings.

D8

Trigger Enable

0

Not Enabled / Stop Trigger

1

Enable Trigger

D[6..4]

Trigger Edge

0

RESERVED for Hardware Trigger (Positive Edge)

1

RESERVED for Hardware Trigger (Negative Edge)

2

RESERVED for Hardware Trigger (Either Edge)

3

Software Trigger

4

Threshold 1

5

Threshold 2

6

Threshold 1 or 2

D[1..0]

Trigger Type

0

Continuous

1

Single Sample

D[15..0]

Summary Description

0x0100

Store continuously once there is a positive edge on the Hardware Trigger (pending).

0x0101

Store single sample once there is a positive edge on the Hardware Trigger (pending).

0x0110

Store continuously once there is a negative edge on the Hardware Trigger (pending).

0x0111

Store single sample once there is a negative edge on the Hardware Trigger (pending).

0x0120

Store continuously once there is a negative or positive edge on the Hardware Trigger (pending).

0x0121

Store single sample once there is a negative or positive edge on the Hardware Trigger (pending).

0x0130

Store continuously once there is a Software Trigger.

0x0131

Store single sample once there is a Software Trigger

0x1140

Store continuously once threshold 1 for channel 2 occurs

0xE161

Store single sample once either threshold 1 or 2 for channel 15 occurs

0x0000

Disable Trigger (will stop FIFO from storing data if continuously running

D[15..12]

Threshold Channel Select

0

Channel 1

1

Channel 2

2

Channel 3

3

Channel 4

4

Channel 5

5

Channel 6

6

Channel 7

7

Channel 8

8

Channel 9

9

Channel 10

10

Channel 11

11

Channel 12

12

Channel 13

13

Channel 14

14

Channel 15

15

Channel 16

Table 6. FIFO Trigger Control

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

D

D

D

D

D

D

D

D

D

FIFO Software Trigger

Function: Software trigger is used to start the FIFO buffer and the collection of data.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: W

Initialized Value: 0 (Not Triggered)

Operational Settings: To use this operation, the FIFO Trigger Control register must be set up as described in the FIFO Trigger Control register. Write a 1 to trigger FIFO collection for all channels.

D31-D1

Reserved. Set to 0

D0

Set to 1 to start the FIFO data collection.

Threshold Detect Programming Registers

The Analog-to-Digital Modules provide registers that support threshold detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual" for the register descriptions.

Saturation Programming Registers

The Analog-to-Digital Modules provide registers that support saturation detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual" for the register descriptions.

Engineering Scaling Conversions Registers

The Analog-to-Digital Module Threshold, Saturation, and Measurement registers can be programmed to be utilized as a Single Precision Floating Point Value (IEEE-754) or as a 32-bit integer value.

Enable Floating Point Mode

Function: Sets all channels for floating point mode or integer module.

Type: unsigned binary word (32-bit)

Data Range: 0 or 1

Read/Write: R/W

Initialized Value: 0 (Integer mode)

Operational Settings: Set bit to 1 to enable Floating Point Mode and 0 for Integer Mode. Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples

Table 7. Enable Floating Point Mode

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Floating Point Offset

Function: This register sets the floating point offset to add to AD data.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0.0

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

Floating Point Scale

Function: This register sets the floating point scale to multiply the AD data.

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: N/A

Read/Write: R/W

Initialized Value: 0

Operational Settings: Refer to section Appendix A: Integer/Floating Point Mode Programming for Integer and Floating Point Mode examples.

Floating Point State

Function: Indicates whether the module’s internal processing is converting the register values and internal values to the binary representation of the mode selected (Integer or Floating Point).

Type: unsigned binary word (32-bit)

Data Range: 0 to 1

Read/Write: R

Initialized Value: 0

Operational Settings: Indicates the whether the module registers are in Integer (0) or Floating Point Mode (1). When the Enable Floating Point Mode is modified, the application must wait until this register’s value matches the requested mode before changing the values of the configuration and control registers with the values in the units specified (Integer or Floating Point).

Table 8. Floating Point State

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Background BIT Threshold Programming Registers

The Background BIT Threshold register provides the ability to specify the minimum time before the BIT fault is reported in the BIT Status registers. The BIT Count Clear register provides the ability to reset the BIT counter used in CBIT.

Background BIT Threshold

Function: Sets BIT Threshold value (in milliseconds) to use for all channels for BIT failure indication.

Type: unsigned binary word (32-bit)

Data Range: 1 ms to 65 seconds

Read/Write: R/W

Initialized Value: 5 ms

Operational Settings: The interval at which BIT is performed is dependent and differs between module types. Rather than specifying the BIT Threshold as a “count", the BIT Threshold is specified as a time in milliseconds. The module will convert the time specified to the BIT Threshold “count" based on the BIT interval for that module.

BIT Count Clear

Function: Resets the CBIT internal circuitry and count mechanism. Set the bit corresponding to the channel you want to clear.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: W

Initialized Value: 0

Operational Settings: Set bit to 1 for channel to resets the CBIT mechanisms. Bit is self-clearing.

Table 9. BIT Count Clear

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Module Common Registers

Refer to “Module Common Registers Module Manual" for the register descriptions.

Status and Interrupt Registers

The AD modules provide status registers for BIT, FIFO, Overcurrent, Open, External Power Loss, Threshold Detect, Saturation, Inter-FPGA Failure and Summary.

Channel Status Enable

Function: Determines whether to update the status for the channels. This feature can be used to “mask" status bits of unused channels in status

registers that are bitmapped by channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0FFF (Channel Status)

Read/Write: R/W

Initialized Value: 0x0000 0FFF

Operational Settings: When the bit corresponding to a given channel in the Channel Status Enable register is not enabled (0) the status will be masked and report “0" or “no failure". This applies to all statuses that are bitmapped by channel (BIT Status, Overcurrent Status and Summary Status).

Note
Background BIT will continue to run even if the Channel Status Enable is set to "0'.
Table 10. Channel Status Enable

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

BIT Status

There are four registers associated with the BIT Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. The BIT Status register will indicate an error when the voltage read is not within the error of the set value.

Table 11. BIT Status

BIT Dynamic Status

BIT Latched Status

BIT Interrupt Enable

BIT Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Function: Sets the corresponding bit associated with the channel’s BIT error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0FFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

BIT Diagnostic

Upon detection of a BIT error, the following registers provide additional information about the error:

  • Power-on BIT Error (Dynamic and Latched)

  • Anti-Aliasing Filter Error (Dynamic and Latched)

  • Voltage Reading Accuracy Error (Dynamic and Latched)

The diagnostic Dynamic register indicates the current condition of the channel’s BIT error status. The diagnostic Latched Status register will maintain the last condition of the channel’s BIT error status. The diagnostic Latched Status will be cleared when the BIT Latched Status register is cleared.

Power-on BIT Error

Function: The Power-on BIT Error register is set when a failure is detected during the power-on self-test (POST) sequence.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0FFF

Read/Write: R

Initialized Value: 0

Operational Settings: 1 is read when a fault is detected. 0 indicates no fault detected.

Note
Faults are detected (associated channel(s) bit set to 1) within 10 ms.
Table 12. Power-on BIT Error
Power-on BIT Error

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Anti-Aliasing Filter Error

Function: The Anti-Aliasing Filter Error register is set when the front-end amplifier fails an internal common-mode rejection ratio (CMRR) test.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0FFF

Read/Write: R

Initialized Value: 0

Operational Settings: 1 is read when a fault is detected. 0 indicates no fault detected.

Note
Faults are detected (associated channel(s) bit set to 1) within 10 ms.
Note
Clearing the latched BIT status will also clear this error register.
Table 13. Anti-Aliasing Filter Error
Anti-Aliasing Filter Error

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Voltage Reading Accuracy Error

Function: The Voltage Reading Accuracy Error register is set when a redundant voltage measurement is inconsistent with the input voltage level detected.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0FFF

Read/Write: R

Initialized Value: 0

Operational Settings: 1 is read when a fault is detected. 0 indicates no fault detected.

Note
Faults are detected (associated channel(s) bit set to 1) within 10 ms.
Note
Clearing the latched BIT status will also clear this error register.
Table 14. Voltage Reading Accuracy Error
Voltage Reading Accuracy Error

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

FIFO Status

There are four registers associated with the FIFO Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. D0-D6 is used to show the different conditions of the buffer.

Bit

Description

Configurable?

D0

Empty; 1 when FIFO Count = 0

No

D1

Almost Empty; 1 when FIFO Count ⇐ “FIFO Almost Empty" register

Yes

D2

Low Watermark; 1 when FIFO Count ⇐ “FIFO Low Watermark" register

Yes

D3

High Watermark; 1 when FIFO Count >= “FIFO High Watermark" register

Yes

D4

Almost Full; 1 when FIFO Count >= “FIFO Almost Full" register

Yes

D5

Full; 1 when FIFO Count = 1 Mega Words (0x000F FFFF)

No

D6

Sample Done; 1 when FIFO Count "FIFO Buffer Size" register

Yes

Table 15. FIFO Status
FIFO Dynamic Status

FIFO Latched Status

FIFO Interrupt Enable

FIFO Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

D

D

D

D

D

D

D

Function: Sets the corresponding bit associated with the FIFO status type; there is a separate register for each channel.

Type: binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 007F

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Note
Shown below is an example of interrupts generated for the High Watermark. As shown, the interrupt is generated as the FIFO count crosses the High Watermark. The interrupt will not be generated a second time until the count goes below the watermark and then above it again.
ad1 ad3 img4

Overcurrent Status

There are four registers associated with the Overcurrent Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. These registers are only applicable to the AD3 module when it is set for current mode.

Table 16. Overcurrent Status
Overcurrent Dynamic Status

Overcurrent Latched Status

Overcurrent Interrupt Enable

Overcurrent Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Function: Sets the corresponding bit associated with the channel’s overcurrent error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0FFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Open/Over-Voltage Status

There are four registers associated with the Open/Over-Voltage Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. These registers are only applicable to Module AD1.

Table 17. Open/Over-Voltage Status
Open/Over-Voltage Dynamic Status

Open/Over-Voltage Latched Status

Open/Over-Voltage Interrupt Enable

Open/Over-Voltage Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

Ch12

Ch11

Ch10

Ch9

0

0

0

0

0

0

0

0

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch8

Ch7

Ch7

Ch6

Ch6

Ch5

Ch5

Ch4

Ch4

Ch3

Ch3

Ch2

Ch2

Ch1

Ch1

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Pos

Neg

Function: Sets the corresponding bit associated with the channel’s Open/Over-Voltage error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

External Power Loss Status

There are four registers associated with the External Power Loss Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

D0 = +12V External Power Loss

D1 = -12V External Power Loss

Table 18. External Power Loss Status
External Power Loss Dynamic Status

External Power Loss Latched Status

External Power Loss Interrupt Enable

External Power Loss Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-12V

+12V

Function: Sets the corresponding bit associated with the channel’s External Power Loss error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0003

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Threshold Detect Status

The Analog-to-Digital Modules provide registers that support threshold detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual" for the register descriptions.

Saturation Status

The Analog-to-Digital Modules provide registers that support saturation detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual" for the register descriptions.

Front-End Amplifier Failure Status

There are four registers associated with the Front-end Amplifier Failure Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

These registers are only applicable to Module AD2 and AD3.

Table 19. Front-End Amplifier Status
Front-end Amplifier Failure Dynamic Status

Front-end Amplifier Failure Latched Status

Front-end Amplifier Failure Interrupt Enable

Front-end Amplifier Failure Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Function: Sets the corresponding bit associated with the channel’s Front-end Amplifier Failure error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0FFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Inter-FPGA Failure Status

Data is periodically transferred between the Lattice FPGA and the Xilinx FPGA. A CRC value is calculated and verified with each data transfer. A CRC error flag is sent from the Lattice FPGA to the Xilinx FPGA if a CRC error is detected. The Xilinx FPGA contains a counter that will increase by two when a CRC error is flagged and decremented by one when there is no CRC error. If the counter reaches ten, the Xilinx FPGA will set the Inter-FPGA Failure status bit and shut down the isolated power supply. In order to recover from an Inter-FPGA Failure, the module needs to be reset and re-initialized.

There are four registers associated with the Inter-FPGA Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt. 0 = Normal; 0x0FFF = Inter-FPGA Communication Failure. The status represents the status for all channels on the module.

Inter-FPGA Failure Status

*

Inter-FPGA Failure Dynamic Status

Inter-FPGA Failure Latched Status

Inter-FPGA Failure Interrupt Enable

Inter-FPGA Failure Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

D

D

D

D

D

D

D

D

D

D

D

D

Function: Sets the corresponding bit associated with the channel’s Inter-FPGA Failure error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Summary Status

There are four registers associated with the Summary Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

Table 20. Summary Status
Summary Status Dynamic Status

Summary Status Latched Status

Summary Status Interrupt Enable

Summary Status Set Edge/Level Interrupt

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

Function: Sets the corresponding bit if any fault (BIT, Overcurrent, Open, External Power Loss, or Inter-FPGA Failure) occurs on that channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0FFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed (typically with a unique number/identifier) such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism.

In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Note
the Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Common Memory and these registers are associated with the Module Slot position (refer to Function Register Map).
Interrupt Vector

Function: Set an identifier for the interrupt.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, this value is reported as part of the interrupt mechanism.

Interrupt Steering

Function: Sets where to direct the interrupt.

Type: unsigned binary word (32-bit)

Data Range: See table

Read/Write: R/W

Initialized Value: 0

Operational Settings: When an interrupt occurs, the interrupt is sent as specified:

Direct Interrupt to VME

1

Direct Interrupt to ARM Processor (via SerDes)

(Custom App on ARM or NAI Ethernet Listener App)

2

Direct Interrupt to PCIe Bus

5

Direct Interrupt to cPCI Bus

6

FUNCTION REGISTER MAP

Key:

Bold Italic = Configuration/Control

Bold Underline = Measurement/Status

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e., write-1-to-clear, writing a “1” to a bit set to “1” will set the bit to “0).

**Data is represented in Floating Point if Enable Floating Point Mode register is set to Floating Point Mode (1) (Pending).

~ Data is always in Floating Point.

A/D Measurement Registers

0x1000

A/D Reading Ch 1**

R

0x1004

A/D Reading Ch 2**

R

0x1008

A/D Reading Ch 3**

R

0x100C

A/D Reading Ch 4**

R

0x1010

A/D Reading Ch 5**

R

0x1014

A/D Reading Ch 6**

R

0x1018

A/D Reading Ch 7**

R

0x101C

A/D Reading Ch 8**

R

0x1020

A/D Reading Ch 9**

R

0x1024

A/D Reading Ch 10**

R

0x1028

A/D Reading Ch 11**

R

0x102C

A/D Reading Ch 12**

R

A/D Control Registers

0x1080

Polarity & Range Ch 1

R/W

0x1084

Polarity & Range Ch 2

R/W

0x1088

Polarity & Range Ch 3

R/W

0x108C

Polarity & Range Ch 4

R/W

0x1090

Polarity & Range Ch 5

R/W

0x1094

Polarity & Range Ch 6

R/W

0x1098

Polarity & Range Ch 7

R/W

0x109C

Polarity & Range Ch 8

R/W

0x10A0

Polarity & Range Ch 9

R/W

0x10A4

Polarity & Range Ch 10

R/W

0x10A8

Polarity & Range Ch 11

R/W

0x10AC

Polarity & Range Ch 12

R/W

0x188C

Sample Rate

R/W

0x1100

Filter Break Frequency Ch 1

R/W

0x1104

Filter Break Frequency Ch 2

R/W

0x1108

Filter Break Frequency Ch 3

R/W

0x110C

Filter Break Frequency Ch 4

R/W

0x1110

Filter Break Frequency Ch 5

R/W

0x1114

Filter Break Frequency Ch 6

R/W

0x1118

Filter Break Frequency Ch 7

R/W

0x111C

Filter Break Frequency Ch 8

R/W

0x1120

Filter Break Frequency Ch 9

R/W

0x1124

Filter Break Frequency Ch 10

R/W

0x1128

Filter Break Frequency Ch 11

R/W

0x112C

Filter Break Frequency Ch 12

R/W

0x1880

Latch All A/D Channels

R/W

FIFO Registers

0x1180

FIFO Buffer Data Ch 1**

R

0x1184

FIFO Buffer Data Ch 2**

R

0x1188

FIFO Buffer Data Ch 3**

R

0x118C

FIFO Buffer Data Ch 4**

R

0x1190

FIFO Buffer Data Ch 5**

R

0x1194

FIFO Buffer Data Ch 6**

R

0x1198

FIFO Buffer Data Ch 7**

R

0x119C

FIFO Buffer Data Ch 8**

R

0x11A0

FIFO Buffer Data Ch 9**

R

0x11A4

FIFO Buffer Data Ch 10**

R

0x11AB

FIFO Buffer Data Ch 11**

R

0x11AC

FIFO Buffer Data Ch 12**

R

0x1200

FIFO Word Count Ch 1

R

0x1204

FIFO Word Count Ch 2

R

0x1208

FIFO Word Count Ch 3

R

0x120C

FIFO Word Count Ch 4

R

0x1210

FIFO Word Count Ch 5

R

0x1214

FIFO Word Count Ch 6

R

0x1218

FIFO Word Count Ch 7

R

0x121C

FIFO Word Count Ch 8

R

0x1220

FIFO Word Count Ch 9

R

0x1224

FIFO Word Count Ch 10

R

0x1228

FIFO Word Count Ch 11

R

0x122C

FIFO Word Count Ch 12

R

0x1480

FIFO Sample Delay Ch 1

R/W

0x1484

FIFO Sample Delay Ch 2

R/W

0x1488

FIFO Sample Delay Ch 3

R/W

0x148C

FIFO Sample Delay Ch 4

R/W

0x1490

FIFO Sample Delay Ch 5

R/W

0x1494

FIFO Sample Delay Ch 6

R/W

0x1498

FIFO Sample Delay Ch 7

R/W

0x149C

FIFO Sample Delay Ch 8

R/W

0x14A0

FIFO Sample Delay Ch 9

R/W

0x14A4

FIFO Sample Delay Ch 10

R/W

0x14A8

FIFO Sample Delay Ch 11

R/W

0x14AC

FIFO Sample Delay Ch 12

R/W

0x1580

FIFO Skip Count Ch 1

R/W

0x1584

FIFO Skip Count Ch 2

R/W

0x1588

FIFO Skip Count Ch 3

R/W

0x158C

FIFO Skip Count Ch 4

R/W

0x1590

FIFO Skip Count Ch 5

R/W

0x1594

FIFO Skip Count Ch 6

R/W

0x1598

FIFO Skip Count Ch 7

R/W

0x159C

FIFO Skip Count Ch 8

R/W

0x15A0

FIFO Skip Count Ch 9

R/W

0x15A4

FIFO Skip Count Ch 10

R/W

0x1548

FIFO Skip Count Ch 11

R/W

0x15AC

FIFO Skip Count Ch 12

R/W

0x1600

Clear FIFO Ch 1

W

0x1604

Clear FIFO Ch 2

W

0x1608

Clear FIFO Ch 3

W

0x160C

Clear FIFO Ch 4

W

0x1610

Clear FIFO Ch 5

W

0x1614

Clear FIFO Ch 6

W

0x1618

Clear FIFO Ch 7

W

0x161C

Clear FIFO Ch 8

W

0x1620

Clear FIFO Ch 9

W

0x1624

Clear FIFO Ch 10

W

0x1628

Clear FIFO Ch 11

W

0x162C

Clear FIFO Ch 12

W

0x1680

Data Control Ch 1

R/W

0x1684

Data Control Ch 2

R/W

0x1688

Data Control Ch 3

R/W

0x168C

Data Control Ch 4

R/W

0x1690

Data Control Ch 5

R/W

0x1694

Data Control Ch 6

R/W

0x1698

Data Control Ch 7

R/W

0x169C

Data Control Ch 8

R/W

0x16A0

Data Control Ch 9

R/W

0x16A4

Data Control Ch 10

R/W

0x16A8

Data Control Ch 11

R/W

0x16AC

Data Control Ch 12

R/W

0x16C0

Reset FIFO Timestamp

W

0x1884

FIFO Trigger Control

R/W

0x1888

FIFO Software Trigger

W

FIFO Thresholds

0x1280

FIFO Almost Empty Ch 1

R/W

0x1284

FIFO Almost Empty Ch 2

R/W

0x1288

FIFO Almost Empty Ch 3

R/W

0x128C

FIFO Almost Empty Ch 4

R/W

0x1290

FIFO Almost Empty Ch 5

R/W

0x1294

FIFO Almost Empty Ch 6

R/W

0x1298

FIFO Almost Empty Ch 7

R/W

0x129C

FIFO Almost Empty Ch 8

R/W

0x12A0

FIFO Almost Empty Ch 9

R/W

0x12A4

FIFO Almost Empty Ch 10

R/W

0x12A8

FIFO Almost Empty Ch 11

R/W

0x12AC

FIFO Almost Empty Ch 12

R/W

0x1380

FIFO Low Watermark Ch 1

R/W

0x1384

FIFO Low Watermark Ch 2

R/W

0x1388

FIFO Low Watermark Ch 3

R/W

0x138C

FIFO Low Watermark Ch 4

R/W

0x1390

FIFO Low Watermark Ch 5

R/W

0x1394

FIFO Low Watermark Ch 6

R/W

0x1398

FIFO Low Watermark Ch 7

R/W

0x139C

FIFO Low Watermark Ch 8

R/W

0x13A0

FIFO Low Watermark Ch 9

R/W

0x13A4

FIFO Low Watermark Ch 10

R/W

0x13A8

FIFO Low Watermark Ch 11

R/W

0x13AC

FIFO Low Watermark Ch 12

R/W

0x1300

FIFO Almost Full Ch 1

R/W

0x1304

FIFO Almost Full Ch 2

R/W

0x1308

FIFO Almost Full Ch 3

R/W

0x130C

FIFO Almost Full Ch 4

R/W

0x1310

FIFO Almost Full Ch 5

R/W

0x1314

FIFO Almost Full Ch 6

R/W

0x1318

FIFO Almost Full Ch 7

R/W

0x131C

FIFO Almost Full Ch 8

R/W

0x1320

FIFO Almost Full Ch 9

R/W

0x1324

FIFO Almost Full Ch 10

R/W

0x1328

FIFO Almost Full Ch 11

R/W

0x132C

FIFO Almost Full Ch 12

R/W

0x1400

FIFO High Watermark Ch 1

R/W

0x1404

FIFO High Watermark Ch 2

R/W

0x1408

FIFO High Watermark Ch 3

R/W

0x140C

FIFO High Watermark Ch 4

R/W

0x1410

FIFO High Watermark Ch 5

R/W

0x1414

FIFO High Watermark Ch 6

R/W

0x1418

FIFO High Watermark Ch 7

R/W

0x141C

FIFO High Watermark Ch 8

R/W

0x1420

FIFO High Watermark Ch 9

R/W

0x1424

FIFO High Watermark Ch 10

R/W

0x1428

FIFO High Watermark Ch 11

R/W

0x142C

FIFO High Watermark Ch 12

R/W

0x1500

FIFO Buffer Size Ch 1

R/W

0x1504

FIFO Buffer Size Ch 2

R/W

0x1508

FIFO Buffer Size Ch 3

R/W

0x150C

FIFO Buffer Size Ch 4

R/W

0x1510

FIFO Buffer Size Ch 5

R/W

0x1514

FIFO Buffer Size Ch 6

R/W

0x1518

FIFO Buffer Size Ch 7

R/W

0x151C

FIFO Buffer Size Ch 8

R/W

0x1520

FIFO Buffer Size Ch 9

R/W

0x1524

FIFO Buffer Size Ch 10

R/W

0x1528

FIFO Buffer Size Ch 11

R/W

0x152C

FIFO Buffer Size Ch 12

R/W

Threshold Detect Programming Registers

The Analog-to-Digital Modules provide registers that support threshold detection. Refer to “Analog-to-Digital Threshold and Saturation

Programming Module Manual" for the Threshold Detect Programming Function Register Map.

Saturation Programming Registers

The Analog-to-Digital Modules provide registers that support saturation. Refer to “Analog-to-Digital Threshold and Saturation Programming

Module Manual" for the Saturation Programming Function Register Map.

Engineering Scaling Conversions Registers

0x02B4

Enable Floating Point

R/W

0x0264

Floating Point State

R

0x1700

Floating Point Offset Ch 1~

R/W

0x1704

Floating Point Offset Ch 2~

R/W

0x1708

Floating Point Offset Ch 3~

R/W

0x170C

Floating Point Offset Ch 4~

R/W

0x1710

Floating Point Offset Ch 5~

R/W

0x1714

Floating Point Offset Ch 6~

R/W

0x1718

Floating Point Offset Ch 7~

R/W

0x171C

Floating Point Offset Ch 8~

R/W

0x1720

Floating Point Offset Ch 9~

R/W

0x1724

Floating Point Offset Ch 10~

R/W

0x1728

Floating Point Offset Ch 11~

R/W

0x172C

Floating Point Offset Ch 12~

R/W

0x1780

Floating Point Scale Ch 1~

R/W

0x1784

Floating Point Scale Ch 2~

R/W

0x1788

Floating Point Scale Ch 3~

R/W

0x178C

Floating Point Scale Ch 4~

R/W

0x1790

Floating Point Scale Ch 5~

R/W

0x1794

Floating Point Scale Ch 6~

R/W

0x1798

Floating Point Scale Ch 7~

R/W

0x179C

Floating Point Scale Ch 8~

R/W

0x17A0

Floating Point Scale Ch 9~

R/W

0x17A4

Floating Point Scale Ch 10~

R/W

0x17A8

Floating Point Scale Ch 11~

R/W

0x17AC

Floating Point Scale Ch 12~

R/W

Module Common Registers

Refer to “Module Common Registers Module Manual" for the Module Common Registers Function Register Map.

Status Registers

0x02B0

Channel Status Enable

R/W

BIT Registers

0x0800

Dynamic Status

R

0x0804

Latched Status*

R/W

0x0808

Interrupt Enable

R/W

0x080C

Set Edge/Level Interrupt

R/W

0x1808

Anti-Aliasing Filter Error Dynamic Status

R

0x180C

Anti-Aliasing Filter Error Latched Status

R/W

0x1810

Voltage Reading Accuracy Error Dynamic Status

R/W

0x1814

Voltage Reading Accuracy Error Latched Status

R/W

0x0248

Test Enabled

R/W

0x024C

Test CBIT Verify

R/W

0x0294

UBIT Polarity

R/W

0x0298

UBIT Test Data

R/W

0x02B8

Background BIT Threshold

R/W

0x02BC

BIT Count Clear

W

0x02AC

Power-on BIT Complete++

R

0x1800

Power-on BIT Error Dynamic Status

R

0x1804

Power-on BIT Error Latched Status

R

++After power-on, Power-on BIT Complete should be checked before reading the BIT Latched Status.

Status Registers

Overcurrent Status

AD3 Only

0x0910

Dynamic Status

R

0x0914

Latched Status*

R/W

0x0918

Interrupt Enable

R/W

0x091C

Set Edge/Level Interrupt

R/W

Open/Over-Voltage Status

AD1 Only

0x0920

Dynamic Status

R

0x0924

Latched Status*

R/W

0x0928

Interrupt Enable

R/W

0x092C

Set Edge/Level Interrupt

R/W

External Power Loss Status

0x0930

Dynamic Status

R

0x0934

Latched Status*

R/W

0x0938

Interrupt Enable

R/W

0x093C

Set Edge/Level Interrupt

R/W

Threshold Detect Status

The Analog-to-Digital Modules provide status registers for threshold detection. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual" for the Threshold Status Function Register Map.

Front-End Amplifier Failure Status

AD2 & AD3 Only

0x0950

Dynamic Status

R

0x0954

Latched Status*

R/W

0x0958

Interrupt Enable

R/W

0x095C

Set Edge/Level Interrupt

R/W

Saturation Programming Registers

The Analog-to-Digital Modules provide status registers for saturation. Refer to “Analog-to-Digital Threshold and Saturation Programming Module Manual" for the Saturation Status Function Register Map.

Status Registers

Summary Status

0x09A0

Dynamic Status

R

0x09A4

Latched Status*

R/W

0x09A8

Interrupt Enable

R/W

0x09AC

Set Edge/Level Interrupt

R/W

Inter-FPGA Failure Status

0x09B0

Dynamic Status

R

0x09B4

Latched Status*

R/W

0x09B8

Interrupt Enable

R/W

0x09BC

Set Edge/Level Interrupt

R/W

FIFO Status

Ch1

0x0810

Dynamic Status

R

0x0814

Latched Status*

R/W

0x0818

Interrupt Enable

R/W

0x081C

Set Edge/Level Interrupt

R/W

Ch2

0x0820

Dynamic Status

R

0x0824

Latched Status*

R/W

0x0828

Interrupt Enable

R/W

0x082C

Set Edge/Level Interrupt

R/W

Ch3

0x0830

Dynamic Status

R

0x0834

Latched Status*

R/W

0x0838

Interrupt Enable

R/W

0x083C

Set Edge/Level Interrupt

R/W

Ch4

0x0840

Dynamic Status

R

0x0844

Latched Status*

R/W

0x0848

Interrupt Enable

R/W

0x084C

Set Edge/Level Interrupt

R/W

Ch5

0x0850

Dynamic Status

R

0x0854

Latched Status*

R/W

0x0858

Interrupt Enable

R/W

0x085C

Set Edge/Level Interrupt

R/W

Ch6

0x0860

Dynamic Status

R

0x0864

Latched Status*

R/W

0x0868

Interrupt Enable

R/W

0x086C

Set Edge/Level Interrupt

R/W

Ch7

0x0870

Dynamic Status

R

0x0874

Latched Status*

R/W

0x0870

Interrupt Enable

R/W

0x0870

Set Edge/Level Interrupt

R/W

Ch8

0x0880

Dynamic Status

R

0x0884

Latched Status*

R/W

0x0880

Interrupt Enable

R/W

0x0880

Set Edge/Level Interrupt

R/W

Ch9

0x0890

Dynamic Status

R

0x0894

Latched Status*

R/W

0x0890

Interrupt Enable

R/W

0x0890

Set Edge/Level Interrupt

R/W

Ch10

0x08A0

Dynamic Status

R

0x08A4

Latched Status*

R/W

0x08A8

Interrupt Enable

R/W

0x08AC

Set Edge/Level Interrupt

R/W

Ch11

0x08B0

Dynamic Status

R

0x08B4

Latched Status*

R/W

0x08B8

Interrupt Enable

R/W

0x08BC

Set Edge/Level Interrupt

R/W

Ch12

0x08C0

Dynamic Status

R

0x08C4

Latched Status*

R/W

0x08C8

Interrupt Enable

R/W

0x08CC

Set Edge/Level Interrupt

R/W

Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are located on the Motherboard Memory Space and do not require any Module Address Offsets. These registers are accessed using the absolute addresses listed in the table below.

0x0500

Module 1 Interrupt Vector 1 - BIT

R/W

0x0504

Module 1 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0508

Module 1 Interrupt Vector 3 - FIFO Ch 2

R/W

0x050C

Module 1 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0501

Module 1 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0514

Module 1 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0518

Module 1 Interrupt Vector 7 - FIFO Ch 6

R/W

0x051C

Module 1 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0520

Module 1 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0524

Module 1 Interrupt Vector 10 - FIFO Ch 9

R/W

0x0528

Module 1 Interrupt Vector 11 - FIFO Ch 10

R/W

0x052C

Module 1 Interrupt Vector 12 - FIFO Ch 11

R/W

0x0530

Module 1 Interrupt Vector 13 - FIFO Ch 12

R/W

0x0534 to 0x0540

Module 1 Interrupt Vector 14-17 - Reserved

R/W

0x0544

Module 1 Interrupt Vector 18 - Overcurrent

R/W

0x0548

Module 1 Interrupt Vector 19 - Open/Over Voltage

R/W

0x054C

Module 1 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0550

Module 1 Interrupt Vector 21 - Threshold

R/W

0x0554

Module 1 Interrupt Vector 22 - FrontEndAmp

R/W

0x0558

Module 1 Interrupt Vector 23 - Saturation

R/W

0x055C to 0x0564

Module 1 Interrupt Vector 24-26 - Reserved

R/W

0x0568

Module 1 Interrupt Vector 27 - Summary

R/W

0x056C

Module 1 Interrupt Vector 28 - Inter-FPGA

R/W

0x0570 to 0x057C

Module 1 Interrupt Vector 29-32 - Reserved

R/W

0x0600

Module 1 Interrupt Steering 1 - BIT

R/W

0x0604

Module 1 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0608

Module 1 Interrupt Steering 3 - FIFO Ch 2

R/W

0x060C

Module 1 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0601

Module 1 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0614

Module 1 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0618

Module 1 Interrupt Steering 7 - FIFO Ch 6

R/W

0x061C

Module 1 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0620

Module 1 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0624

Module 1 Interrupt Steering 10 - FIFO Ch 9

R/W

0x0628

Module 1 Interrupt Steering 11 - FIFO Ch 10

R/W

0x062C

Module 1 Interrupt Steering 12 - FIFO Ch 11

R/W

0x0630

Module 1 Interrupt Steering 13 - FIFO Ch 12

R/W

0x0634 to 0x0640

Module 1 Interrupt Steering 14-17 - Reserved

R/W

0x0644

Module 1 Interrupt Steering 18 - Overcurrent

R/W

0x0648

Module 1 Interrupt Steering 19 - Open/Over Voltage

R/W

0x064C

Module 1 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0650

Module 1 Interrupt Steering 21 - Threshold

R/W

0x0654

Module 1 Interrupt Steering 22 - FrontEndAmp

R/W

0x0658

Module 1 Interrupt Steering 23 - Saturation

R/W

0x065C to 0x0664

Module 1 Interrupt Steering 24-26 - Reserved

R/W

0x0668

Module 1 Interrupt Steering 27 - Summary

R/W

0x066C

Module 1 Interrupt Steering 28 - Inter-FPGA

R/W

0x0670 to 0x067C

Module 1 Interrupt Steering 29-32 - Reserved

R/W

0x0700

Module 2 Interrupt Vector 1 - BIT

R/W

0x0704

Module 2 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0708

Module 2 Interrupt Vector 3 - FIFO Ch 2

R/W

0x070C

Module 2 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0701

Module 2 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0714

Module 2 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0718

Module 2 Interrupt Vector 7 - FIFO Ch 6

R/W

0x071C

Module 2 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0720

Module 2 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0724

Module 2 Interrupt Vector 10 - FIFO Ch 9

R/W

0x0728

Module 2 Interrupt Vector 11 - FIFO Ch 10

R/W

0x072C

Module 2 Interrupt Vector 12 - FIFO Ch 11

R/W

0x0730

Module 2 Interrupt Vector 13 - FIFO Ch 12

R/W

0x0734 to 0x0740

Module 2 Interrupt Vector 14-17 - Reserved

R/W

0x0744

Module 2 Interrupt Vector 18 - Overcurrent

R/W

0x0748

Module 2 Interrupt Vector 19 - Open/Over Voltage

R/W

0x074C

Module 2 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0750

Module 2 Interrupt Vector 21 - Threshold

R/W

0x0754

Module 2 Interrupt Vector 22 - FrontEndAmp

R/W

0x0758

Module 2 Interrupt Vector 23 - Saturation

R/W

0x075C to 0x0764

Module 2 Interrupt Vector 24-26 - Reserved

R/W

0x0768

Module 2 Interrupt Vector 27 - Summary

R/W

0x076C

Module 2 Interrupt Vector 28 - Inter-FPGA

R/W

0x0770 to 0x077C

Module 2 Interrupt Vector 29-32 - Reserved

R/W

0x0800

Module 2 Interrupt Steering 1 - BIT

R/W

0x0804

Module 2 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0808

Module 2 Interrupt Steering 3 - FIFO Ch 2

R/W

0x080C

Module 2 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0801

Module 2 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0814

Module 2 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0818

Module 2 Interrupt Steering 7 - FIFO Ch 6

R/W

0x081C

Module 2 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0820

Module 2 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0824

Module 2 Interrupt Steering 10 - FIFO Ch 9

R/W

0x0828

Module 2 Interrupt Steering 11 - FIFO Ch 10

R/W

0x082C

Module 21 Interrupt Steering 12 - FIFO Ch 11

R/W

0x0830

Module 2 Interrupt Steering 13 - FIFO Ch 12

R/W

0x0834 to 0x0840

Module 2 Interrupt Steering 14-17 - Reserved

R/W

0x0844

Module 2 Interrupt Steering 18 - Overcurrent

R/W

0x0848

Module 2 Interrupt Steering 19 - Open/Over Voltage

R/W

0x084C

Module 2 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0850

Module 2 Interrupt Steering 21 - Threshold

R/W

0x0854

Module 2 Interrupt Steering 22 - FrontEndAmp

R/W

0x0858

Module 2 Interrupt Steering 23 - Saturation

R/W

0x085C to 0x0864

Module 2 Interrupt Steering 24-26 - Reserved

R/W

0x0868

Module 2 Interrupt Steering 27 - Summary

R/W

0x086C

Module 2 Interrupt Steering 28 - Inter-FPGA

R/W

0x0870 to 0x087C

Module 2 Interrupt Steering 29-32 - Reserved

R/W

0x0900

Module 3 Interrupt Vector 1 - BIT

R/W

0x0904

Module 3 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0908

Module 3 Interrupt Vector 3 - FIFO Ch 2

R/W

0x090C

Module 3 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0901

Module 3 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0914

Module 3 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0918

Module 3 Interrupt Vector 7 - FIFO Ch 6

R/W

0x091C

Module 3 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0920

Module 3 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0924

Module 3 Interrupt Vector 10 - FIFO Ch 9

R/W

0x0928

Module 3 Interrupt Vector 11 - FIFO Ch 10

R/W

0x092C

Module 3 Interrupt Vector 12 - FIFO Ch 11

R/W

0x0930

Module 3 Interrupt Vector 13 - FIFO Ch 12

R/W

0x0934 to 0x0940

Module 3 Interrupt Vector 14-17 - Reserved

R/W

0x0944

Module 3 Interrupt Vector 18 - Overcurrent

R/W

0x0948

Module 3 Interrupt Vector 19 - Open/Over Voltage

R/W

0x094C

Module 3 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0950

Module 3 Interrupt Vector 21 - Threshold

R/W

0x0954

Module 3 Interrupt Vector 22 - FrontEndAmp

R/W

0x0958

Module 3 Interrupt Vector 23 - Saturation

R/W

0x095C to 0x0764

Module 3 Interrupt Vector 24-26 - Reserved

R/W

0x0968

Module 3 Interrupt Vector 27 - Summary

R/W

0x096C

Module 3 Interrupt Vector 28 - Inter-FPGA

R/W

0x0970 to 0x097C

Module 3 Interrupt Vector 29-32 - Reserved

R/W

0x0A00

Module 3 Interrupt Steering 1 - BIT

R/W

0x0A04

Module 3 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0A08

Module 3 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0A0C

Module 3 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0A01

Module 3 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0A14

Module 3 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0A18

Module 3 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0A1C

Module 3 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0A20

Module 3 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0A24

Module 3 Interrupt Steering 10 - FIFO Ch 9

R/W

0x0A28

Module 3 Interrupt Steering 11 - FIFO Ch 10

R/W

0x0A2C

Module 3 Interrupt Steering 12 - FIFO Ch 11

R/W

0x0A30

Module 3 Interrupt Steering 13 - FIFO Ch 12

R/W

0x0A34 to 0x0A40

Module 3 Interrupt Steering 14-17 - Reserved

R/W

0x0A44

Module 3 Interrupt Steering 18 - Overcurrent

R/W

0x0A48

Module 3 Interrupt Steering 19 - Open/Over Voltage

R/W

0x0A4C

Module 3 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0A50

Module 3 Interrupt Steering 21 - Threshold

R/W

0x0A54

Module 3 Interrupt Steering 22 - FrontEndAmp

R/W

0x0A58

Module 3 Interrupt Steering 23 - Saturation

R/W

0x0A5C to 0x0A64

Module 3 Interrupt Steering 24-26 - Reserved

R/W

0x0A68

Module 3 Interrupt Steering 27 - Summary

R/W

0x0A6C

Module 3 Interrupt Steering 28 - Inter-FPGA

R/W

0x0A70 to 0x0A7C

Module 3 Interrupt Steering 29-32 - Reserved

R/W

0x0B00

Module 4 Interrupt Vector 1 - BIT

R/W

0x0B04

Module 4 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0B08

Module 4 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0B0C

Module 4 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0B01

Module 4 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0B14

Module 4 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0B18

Module 4 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0B1C

Module 4 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0B20

Module 4 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0B24

Module 4 Interrupt Vector 10 - FIFO Ch 9

R/W

0x0B28

Module 4 Interrupt Vector 11 - FIFO Ch 10

R/W

0x0B2C

Module 4 Interrupt Vector 12 - FIFO Ch 11

R/W

0x0B30

Module 4 Interrupt Vector 13 - FIFO Ch 12

R/W

0x0B34 to 0x0B40

Module 4 Interrupt Vector 14-17 - Reserved

R/W

0x0B44

Module 4 Interrupt Vector 18 - Overcurrent

R/W

0x0B48

Module 4 Interrupt Vector 19 - Open/Over Voltage

R/W

0x0B4C

Module 4 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0B50

Module 4 Interrupt Vector 21 - Threshold

R/W

0x0B54

Module 4 Interrupt Vector 22 - FrontEndAmp

R/W

0x0B58

Module 4 Interrupt Vector 23 - Saturation

R/W

0x0B5C to 0x0B64

Module 4 Interrupt Vector 24-26 - Reserved

R/W

0x0B68

Module 4 Interrupt Vector 27 - Summary

R/W

0x0B6C

Module 4 Interrupt Vector 28 - Inter-FPGA

R/W

0x0B70 to 0x0B7C

Module 4 Interrupt Vector 29-32 - Reserved

R/W

0x0C00

Module 4 Interrupt Steering 1 - BIT

R/W

0x0C04

Module 4 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0C08

Module 4 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0C0C

Module 4 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0C01

Module 4 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0C14

Module 4 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0C18

Module 4 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0C1C

Module 4 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0C20

Module 4 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0C24

Module 4 Interrupt Steering 10 - FIFO Ch 9

R/W

0x0C28

Module 4 Interrupt Steering 11 - FIFO Ch 10

R/W

0x0C2C

Module 4 Interrupt Steering 12 - FIFO Ch 11

R/W

0x0C30

Module 4 Interrupt Steering 13 - FIFO Ch 12

R/W

0x0C34 to 0x0C40

Module 4 Interrupt Steering 14-17 - Reserved

R/W

0x0C44

Module 4 Interrupt Steering 18 - Overcurrent

R/W

0x0C48

Module 4 Interrupt Steering 19 - Open/Over Voltage

R/W

0x0C4C

Module 4 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0C50

Module 4 Interrupt Steering 21 - Threshold

R/W

0x0C54

Module 4 Interrupt Steering 22 - FrontEndAmp

R/W

0x0C58

Module 4 Interrupt Steering 23 - Saturation

R/W

0x0C5C to 0x0C64

Module 4 Interrupt Steering 24-26 - Reserved

R/W

0x0C68

Module 4 Interrupt Steering 27 - Summary

R/W

0x0C6C

Module 4 Interrupt Steering 28 - Inter-FPGA

R/W

0x0C70 to 0x0C7C

Module 4 Interrupt Steering 29-32 - Reserved

R/W

0x0D00

Module 5 Interrupt Vector 1 - BIT

R/W

0x0D04

Module 5 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0D08

Module 5 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0D0C

Module 5 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0D01

Module 5 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0D14

Module 5 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0D18

Module 5 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0D1C

Module 5 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0D20

Module 5 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0D24

Module 5 Interrupt Vector 10 - FIFO Ch 9

R/W

0x0D28

Module 5 Interrupt Vector 11 - FIFO Ch 10

R/W

0x0D2C

Module 5 Interrupt Vector 12 - FIFO Ch 11

R/W

0x0D30

Module 5 Interrupt Vector 13 - FIFO Ch 12

R/W

0x0D34 to 0x0D40

Module 5 Interrupt Vector 14-17 - Reserved

R/W

0x0D44

Module 5 Interrupt Vector 18 - Overcurrent

R/W

0x0D48

Module 5 Interrupt Vector 19 - Open/Over Voltage

R/W

0x0D4C

Module 5 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0D50

Module 5 Interrupt Vector 21 - Threshold

R/W

0x0D54

Module 5 Interrupt Vector 22 - FrontEndAmp

R/W

0x0D58

Module 5 Interrupt Vector 23 - Saturation

R/W

0x0D5C to 0x0D64

Module 5 Interrupt Vector 24-26 - Reserved

R/W

0x0D68

Module 5 Interrupt Vector 27 - Summary

R/W

0x0D6C

Module 5 Interrupt Vector 28 - Inter-FPGA

R/W

0x0D70 to 0x0D7C

Module 5 Interrupt Vector 29-32 - Reserved

R/W

0x0E00

Module 5 Interrupt Steering 1 - BIT

R/W

0x0E04

Module 5 Interrupt Steering 2 - FIFO Ch 1

R/W

0x0E08

Module 5 Interrupt Steering 3 - FIFO Ch 2

R/W

0x0E0C

Module 5 Interrupt Steering 4 - FIFO Ch 3

R/W

0x0E01

Module 5 Interrupt Steering 5 - FIFO Ch 4

R/W

0x0E14

Module 5 Interrupt Steering 6 - FIFO Ch 5

R/W

0x0E18

Module 5 Interrupt Steering 7 - FIFO Ch 6

R/W

0x0E1C

Module 5 Interrupt Steering 8 - FIFO Ch 7

R/W

0x0E20

Module 5 Interrupt Steering 9 - FIFO Ch 8

R/W

0x0E24

Module 5 Interrupt Steering 10 - FIFO Ch 9

R/W

0x0E28

Module 5 Interrupt Steering 11 - FIFO Ch 10

R/W

0x0E2C

Module 5 Interrupt Steering 12 - FIFO Ch 11

R/W

0x0E30

Module 5 Interrupt Steering 13 - FIFO Ch 12

R/W

0x0E34 to 0x0E40

Module 5 Interrupt Steering 14-17 - Reserved

R/W

0x0E44

Module 5 Interrupt Steering 18 - Overcurrent

R/W

0x0E48

Module 5 Interrupt Steering 19 - Open/Over Voltage

R/W

0x0E4C

Module 5 Interrupt Steering 20 - ExtPwrLoss

R/W

0x0E50

Module 5 Interrupt Steering 21 - Threshold

R/W

0x0E54

Module 5 Interrupt Steering 22 - FrontEndAmp

R/W

0x0E58

Module 5 Interrupt Steering 23 - Saturation

R/W

0x0E5C to 0x0E64

Module 5 Interrupt Steering 24-26 - Reserved

R/W

0x0E68

Module 5 Interrupt Steering 27 - Summary

R/W

0x0E6C

Module 5 Interrupt Steering 28 - Inter-FPGA

R/W

0x0E70 to 0x0E7C

Module 5 Interrupt Steering 29-32 - Reserved

R/W

0x0F00

Module 6 Interrupt Vector 1 - BIT

R/W

0x0F04

Module 6 Interrupt Vector 2 - FIFO Ch 1

R/W

0x0F08

Module 6 Interrupt Vector 3 - FIFO Ch 2

R/W

0x0F0C

Module 6 Interrupt Vector 4 - FIFO Ch 3

R/W

0x0F01

Module 6 Interrupt Vector 5 - FIFO Ch 4

R/W

0x0F14

Module 6 Interrupt Vector 6 - FIFO Ch 5

R/W

0x0F18

Module 6 Interrupt Vector 7 - FIFO Ch 6

R/W

0x0F1C

Module 6 Interrupt Vector 8 - FIFO Ch 7

R/W

0x0F20

Module 6 Interrupt Vector 9 - FIFO Ch 8

R/W

0x0F24

Module 6 Interrupt Vector 10 - FIFO Ch 9

R/W

0x0F28

Module 6 Interrupt Vector 11 - FIFO Ch 10

R/W

0x0F2C

Module 6 Interrupt Vector 12 - FIFO Ch 11

R/W

0x0F30

Module 6 Interrupt Vector 13 - FIFO Ch 12

R/W

0x0F34 to 0x0F40

Module 6 Interrupt Vector 14-17 - Reserved

R/W

0x0F44

Module 6 Interrupt Vector 18 - Overcurrent

R/W

0x0F48

Module 6 Interrupt Vector 19 - Open/Over Voltage

R/W

0x0F4C

Module 6 Interrupt Vector 20 - ExtPwrLoss

R/W

0x0F50

Module 6 Interrupt Vector 21 - Threshold

R/W

0x0F54

Module 6 Interrupt Vector 22 - FrontEndAmp

R/W

0x0F58

Module 6 Interrupt Vector 23 - Saturation

R/W

0x0F5C to 0x0F64

Module 6 Interrupt Vector 24-26 - Reserved

R/W

0x0F68

Module 6 Interrupt Vector 27 - Summary

R/W

0x0F6C

Module 6 Interrupt Vector 28 - Inter-FPGA

R/W

0x0F70 to 0x0F7C

Module 6 Interrupt Vector 29-32 - Reserved

R/W

0x1000

Module 6 Interrupt Steering 1 - BIT

R/W

0x1004

Module 6 Interrupt Steering 2 - FIFO Ch 1

R/W

0x1008

Module 6 Interrupt Steering 3 - FIFO Ch 2

R/W

0x100C

Module 6 Interrupt Steering 4 - FIFO Ch 3

R/W

0x1010

Module 6 Interrupt Steering 5 - FIFO Ch 4

R/W

0x1014

Module 6 Interrupt Steering 6 - FIFO Ch 5

R/W

0x1018

Module 6 Interrupt Steering 7 - FIFO Ch 6

R/W

0x101C

Module 6 Interrupt Steering 8 - FIFO Ch 7

R/W

0x1020

Module 6 Interrupt Steering 9 - FIFO Ch 8

R/W

0x1024

Module 6 Interrupt Steering 10 - FIFO Ch 9

R/W

0x1028

Module 6 Interrupt Steering 11 - FIFO Ch 10

R/W

0x102C

Module 6 Interrupt Steering 12 - FIFO Ch 11

R/W

0x1030

Module 6 Interrupt Steering 13 - FIFO Ch 12

R/W

0x1034 to 0x1040

Module 6 Interrupt Steering 14-17 - Reserved

R/W

0x1044

Module 6 Interrupt Steering 18 - Overcurrent

R/W

0x1048

Module 6 Interrupt Steering 19 - Open/Over Voltage

R/W

0x104C

Module 6 Interrupt Steering 20 - ExtPwrLoss

R/W

0x1050

Module 6 Interrupt Steering 21 - Threshold

R/W

0x1054

Module 6 Interrupt Steering 22 - FrontEndAmp

R/W

0x1058

Module 6 Interrupt Steering 23 - Saturation

R/W

0x105C to 0x1064

Module 6 Interrupt Steering 24-26 - Reserved

R/W

0x1068

Module 6 Interrupt Steering 27 - Summary

R/W

0x106C

Module 6 Interrupt Steering 28 - Inter-FPGA

R/W

0x1070 to 0x107C

Module 6 Interrupt Steering 29-32 - Reserved

R/W

APPENDIX A: INTEGER/FLOATING POINT MODE PROGRAMMING

Integer Mode Programming

When in Integer Mode, the values in the following registers are dependent on the Polarity and Range settings:

  • A/D Reading and FIFO Buffer Data

  • UBIT Test Data

  • Threshold Level and Threshold Hysteresis

  • Low and High Saturation

A/D Reading and FIFO Buffer Data

The LSB for the 24-bit word resolution for the A/D Reading register and the FIFO Buffer Data register is dependent on the Polarity and Range setting. The 32-bit binary value in these registers use the two’s complement form to represent the positive and negative values.

For example:

AD1 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

      LSB = 10.0 / 0x007F FFFF = 10.0 / 223 = 10.0 / 8388608

      If the register value is 3774873 (binary equivalent for this value is 0x0039 9999), conversion to the voltage value is 3774873 * (10.0 / 8388608) = 4.50 V.

      If the register value is -100000 (binary equivalent for this value is 0xFFFE 7960), conversion to the voltage value is -100000 * (10.0 / 8388608) = -0.0119 V.

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

      LSB = 10.0 / 0x00FF FFFF = 10.0 / 224 = 10.0 / 16777216

      If the register value is 3774873 (binary equivalent for this value is 0x0039 9999), conversion to the voltage value is 14745 * (10.0 / 1677216) = 2.25 V.

AD2 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

      LSB = 100.0 / 0x007F FFFF = 100.0 / 223 = 100.0 / 8388608

      If the register value is 3774873 (binary equivalent for this value is 0x0039 9999), conversion to the voltage value is 3774873 * (100.0 / 8388608) = 45.0 V.

      If the register value is -100000 (binary equivalent for this value is 0xFFFE 7960), conversion to the voltage value is -100000 * (100.0 / 8388608) = -0.119 V.

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

      LSB = 100.0 / 0x00FF FFFF = 100.0 / 224 = 100.0 / 16777216

      If the register value is 3774873 (binary equivalent for this value is 0x0039 9999), conversion to the voltage value is 3774873 * (100.0 / 16777216) = 22.5 V

AD3 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 25.0 mA)

      LSB = 25.0 / 0x007F FFFF = 25.0 / 223 = 25.0 / 8388608

      If the register value is 3774873 (binary equivalent for this value is 0x0039 9999), conversion to the voltage value is 3774873 * (25.0 / 8388608) = 11.25 mA.

      If the register value is -100000 (binary equivalent for this value is 0xFFFE 7960), conversion to the voltage value is -100000 * (25.0 / 8388608) = -0.2980 mA.

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 25.0 mA)

      LSB = 25.0 / 0x00FF FFFF = 25.0 / 224 = 25.0 / 16777216

      If the register value is 3774873 (binary equivalent for this value is 0x0039 9999), conversion to the voltage value is 3774873 * (25.0 / 16777216) = 5.625 mA.

UBIT Test Programming

The value to set in the UBIT Test Data register is dependent on the Polarity and Range setting. In the Integer mode, the A/D Reading register will represent the voltage (AD1, AD2) or current (AD3) measured as the result of setting the UBIT test value.

For example:

AD1 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

      LSB = 10.0 / 0x007F FFFF = 10.0 / 223 = 10.0 / 838860

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Reading (volts)

Binary Value

3.0

3.0 * (8388608/10.0) = 2516582 = 0x0026 6666

2.96

2.96 * (8388608/10.0) = 2483027 = 0x0025 E353

-3.0

-3.0 * (8388608/10.0) = -2516582 = 0xFFD9 999A

-2.96

-2.96 * (8388608/10.0) = -2483027 = 0xFFDA 1CAD

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

      LSB = 10.0 / 0x00FF FFFF = 10.0 / 224 = 10.0 / 16777216

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Reading (volts)

Binary Value

3.0

3.0 * (16777216/10.0) = 5033164 = 0x004C CCCC

2.96

2.96 * (65536/10.0) = 4966055 = 0x004B C6A7

AD2 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

      LSB = 100.0 / 0x007F FFFF = 100.0 / 223 = 100.0 / 8388608

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Reading (volts)

Binary Value

30.0

30.0 * (8388608/100.0) = 2516582 = 0x0026 6666

29.6

29.6 * (8388608/100.0) = 2483027 = 0x0025 E353

-30.0

-30.0 * (8388608/100.0) = -2516582 = 0xFFD9 999A

-29.6

-29.6 * (8388608/100.0) = -2483027 = 0xFFDA 1CAD

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

      LSB = 100.0 / 0x00FF FFFF = 100.0 / 224 = 100.0 / 16777216

UBIT Test Value Example of A/D Reading

Test Value (volts)

Binary Value

Reading (volts)

Binary Value

30.0

30.0 * (16777216/100.0) = 5033164= 0x004C CCCD

29.6

29.6 * (65536/100.0) = 19399 = 0x004B C6A7

AD3 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 25.0 mA)

      LSB = 25.0 / 0x007F FFFF = 25.0 / 223 = 25.0 / 8388608

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Reading (volts)

Binary Value

3.0

3.0 * (8388608/25.0) = 1006632= 0x000F 5C28

29.6

2.96 * (8388608/25.0) = 993211= 0x000F 27BB

-3.0

-3.0 * (8388608/25.0) = -1006632= 0xFFF0 A3D8

-29.6

-2.96 * (8388608/25.0) = -993211= 0xFFF0 D845

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 25.0 mA)

      LSB = 25.0 / 0x00FF FFFF = 25.0 / 224 = 25.0 / 16777216

UBIT Test Value

Example of A/D Reading

Test Value (volts)

Binary Value

Reading (volts)

Binary Value

3.0

3.0 * (16777216/25.0) = 2013265= 0x001E B851

2.96

2.96 * (16777216/25.0) = 1986422= 0x001E 4F76

Threshold Programming

The LSB for the 24-bit word resolution for the Threshold Detect Level and Threshold Detect Hysteresis registers is dependent on the Polarity and Range setting. The 32-bit binary value in these registers use the two’s complement form to represent the positive and negative values.

For example:

AD1 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

      LSB = 10.0 / 0x007F FFFF = 10.0 / 223 = 10.0 / 8388608

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

7.5

7.5 * (8388608/10.0) = 6291456= 0x0060 0000

0.25

0.25 * (8388608/10.0) = 209715= 0x0003 3333

-7.5

-7.5 * (8388608/10.0) = -6291456 = 0xFFA0 0000

-0.15

0.15 * (8388608/10.0) = 125829= 0x0001 EB85

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

      LSB = 10.0 / 0x00FF FFFF = 10.0 / 224 = 10.0 / 16777216

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

7.5

7.5 * (16777216/10.0) = 12582912= 0x00C0 0000

0.25

0.25 * (16777216/10.0) = 419430= 0x0006 6666

AD2 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

      LSB = 100.0 / 0x007F FFFF = 100.0 / 223 = 100.0 / 8388608

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

75.0

75.0 * (8388608/100.0) = 6291456= 0x0060 0000

2.5

2.5 * (8388608/100.0) = 209715= 0x0003 3333

-75.0

-75.0*(8388608/100.0) =-6291456= 0xFFA0 0000

1.5

1.5 * (8388608/100.0) = 492 = 0x0001 EB85

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

      LSB = 100.0 / 0x00FF FFFF = 100.0 / 224 = 100.0 / 16777216

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

75.0

75.0 * (16777216/100.0) =12582912 = 0x00C0 0000

2.5

2.5 * (16777216/100.0) = 419430= 0x0006 6666

AD3 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 25.0 mA)

      LSB = 25.0 / 0x007F FFFF = 25.0 / 223 = 25.0 / 8388608

Threshold Detect Level Value (mA)

Threshold Detect Hysteresis Value (mA) (must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

20.5

20.5 * (8388608/25.0) = 6878658= 0x0068 F5C2

0.5

0.5 * (8388608/25.0) = 167772 = 0x0002 8F5C

-20.5

-20.5 * (8388608/25.0) = -6878658= 0xFF97 0A3E

0.25

0.25 * (8388608/25.0) = 83886= 0x0001 47AE

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 25.0 mA)

      LSB = 25.0 / 0x00FF FFFF = 25.0 / 224 = 25.0 / 16777216

Threshold Detect Level Value (mA)

Threshold Detect Hysteresis Value (mA) (must be positive)

Level Value

Binary Value

Hysteresis

Binary Value

20.5

20.5 * (16777216/25.0) = 53740 = 0x00D1 EB85

0.5

0.5 * (16777216/25.0) = 1311 =0x0005 1EB8

Saturation Programming

The LSB for the 24-bit word resolution for the Low and High Saturation registers is dependent on the Polarity and Range setting. The 32-bit binary value in these registers use the two’s complement form to represent the positive and negative values.

For example:

AD1 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

      LSB = 10.0 / 0x007F FFFF = 10.0 / 223 = 10.0 / 8388608

Low Saturation Value (volts)

High Saturation Value (volts)

Value

Binary Value

Value

Binary Value

-7.5

-7.5 * (8388608/10.0) = -6291456= 0xFFA0 0000

7.5

7.5 * (8388608/10.0) = 6291456= 0x0060 0000

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

      LSB = 10.0 / 0x00FF FFFF = 10.0 / 224 = 10.0 / 16777216

Low Saturation Value (volts)

High Saturation Value (volts)

Value

Binary Value

Value

Binary Value

1.5

1.5 * (16777216/10.0) = 9830 = 0x0000 2666

7.5

7.5 * (16777216/10.0) = 49152 0x0000 C000

AD2 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

      LSB = 100.0 / 0x007F FFFF = 100.0 / 223 = 100.0 / 8388608

Low Saturation Value (volts)

High Saturation Value (volts)

Value

Binary Value

Value

Binary Value

-75.0

-75.0 * (8388608/100.0) = -24576 = 0xFFFF A000

75.0

75.0 * (8388608/100.0) = 24576 = 0x0000 6000

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

24

      LSB = 100.0 / 0x00FF FFFF = 100.0 / 224 = 100.0 / 16777216

Low Saturation Value (volts)

High Saturation Value (volts)

Value

Binary Value

Value

Binary Value

15.0

15.0 * (16777216/100.0) = 9830 = 0x0000 2666

75.0

75.0 * (16777216/100.0) = 49152 = 0x0000 C000

AD3 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 25.0 mA)

      LSB = 25.0 / 0x007F FFFF = 25.0 / 223 = 25.0 / 8388608

Low Saturation Value (mA)

High Saturation Value (mA)

Value

Binary Value

Value

Binary Value

-20.5

-20.5 * (8388608/25.0) = -26870 = 0xFFFF 970A

20.5

20.5 * (8388608/25.0) = 26870 = 0x0000 68F6

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 25.0 mA)

      LSB = 25.0 / 0x00FF FFFF = 25.0 / 224 = 25.0 / 16777216

Low Saturation Value (mA)

High Saturation Value (mA)

Value

Binary Value

Value

Binary Value

1.5

1.5 * (16777216/25.0) = 1006632= 0x000F 5C28

20.5

20.5 * (16777216/25.0) = 13757317= 0x00D1 EB85

Floating Point Mode Voltage/Current Programming

When in Floating Point Mode, the registers listed in the Integer Mode Programming section are still dependent on the Polarity and Range settings, however, the module handles the conversion of the 32-bit binary value to to Single Precision Floating Point Value (IEEE-754) format. The values in the Floating Point Scale register and Floating Point Offset register are used in the conversion. For results to be represent voltage:

  • Set Floating Point Scale register to Range

  • Set Floating Point Offset register to 0

A/D Reading and FIFO Buffer Data

For example:

AD1 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

      Floating Point Scale = 10.0 = 10.0 V

      Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating PointScale and Offset (volts)

Single Precision Floating Point Value (IEEE-754)

3774873/ 8388608= 0.45 (0x0039 9999/0x007F FFFF)

(0.45 * 10.0) + 0.0 = 4.50

0x4090 0000

-25585 / 8388608= -0.00305 (0xFFFF 9C0F/0x007F FFFF)

(-0.00305 * 10.0) + 0.0 =-0.0305

0xBCF9 DB23

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

      Floating Point Scale = 10.0 = 10.0 V

      Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating PointScale and Offset (volts)

Single Precision Floating Point Value (IEEE-754)

3774873/ 16777216= 0.225 0x0039 9999/0x00FF FFFF)

(0.225 * 10.0) + 0.0 = 2.25

0x4010 0000

AD2 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

      Floating Point Scale = 100.0 = 100.0 V

      Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating PointScale and Offset (volts)

Single Precision Floating Point Value (IEEE-754)

3774873/ 8388608= 0.45 (0x0039 9999/0x007F FFFF)

(0.45 * 100.0) + 0.0 =

45.0

0x4234 0000

-25585 / 8388608= -0.00305 (0xFFFF 9C0F/0x007F FFFF)

(-0.00305 * 100.0) + 0.0 =-0.305

0xBE9C 28F6

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

      Floating Point Scale = 10.0 = 10.0 V

      Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating PointScale and Offset (volts)

Single Precision Floating Point Value (IEEE-754)

3774873/ 16777216= 0.225 0x0039 9999/0x00FF FFFF)

(0.225 * 100.0) + 0.0 = 22.5

0x41B4 0000

AD3 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 25.0 mA)

      Floating Point Scale = 25.0 = 25.0 mA

      Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating PointScale and Offset (mA)

Single Precision Floating Point Value (IEEE-754)

3774873/ 8388608= 0.45 (0x0039 9999/0x007F FFFF)

(0.45 * 25.0) + 0.0 = 11.25

0x4134 0000

-25585 / 8388608-0.00305 (0xFFFF 9C0F/0x007F FFFF)

(-0.00305 * 25.0) + 0.0 =-0.0763

0xBD9C 432D

  • Polarity & Range Register = 0x00 (Polarity = Unipolar Range = 25.0 mA)

      Floating Point Scale = 25.0 = 25.0 mA

      Floating Point Offset = 0

Example of Internal A/D Reading Value

Applying Floating PointScale and Offset (mA)

Single Precision Floating Point Value (IEEE-754)

3774873/ 16777216= 0.225 (0x0039 9999/0x00FF FFFF)

(0.225* 25.0) + 0.0 = 5.625

0x40B4 0000

UBIT Test Programming

The value to set in the UBIT Test Data register is dependent on the Polarity and Range settings and these settings will determine the 32-bit value to set in this register. In the Floating Point mode, the A/D Reading register will represent the voltage measured as the result of setting the UBIT test value.

For example:

AD1 Modules:

  • Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

      LSB = 10.0 / 0x007F FFFF = 10.0 / 223 = 10.0 / 8388608

      Floating Point Scale = 10.0 = 10.0 V

      Floating Point Offset = 0

UBIT Test Value

Example of A/D Reading

Test Value(volts)

Binary Value

Internal A/D Reading Value

Reading (Volts)

Single Precision Floating Point Value (IEEE-754)

3.0

3.0 * (8388608/10.0) = 2516582= 0x0026 6666

2482944/ 8388608= 0.296 (0x0025 E300/0x007F FFFF)

(0.296 * 10.0) + 0.0 = 2.96

0x403D 70A4

-3.0

-3.0 * (8388608/10.0) =-2516582= 0xFFD9 999A

-2482944 / 8388608= -0.296 (0xFFDA 1D00/0x007F FFFF)

(-0.296 * 10.0) + 0.0 =-2.96

0xC03D 70A4

  • Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

      LSB = 10.0 / 0x00FF FFFF = 10.0 / 224 = 10.0 / 16777216

      Floating Point Scale = 10.0 = 10.0 V

      Floating Point Offset = 0

UBIT Test Value

Example of A/D Reading

Test Value(volts)

Binary Value

Internal A/D Reading Value

Reading (Volts)

Single Precision Floating Point Value (IEEE-754)

3.0

3.0 * (16777216/10.0) = 5033164= 0x004C CCCC

4966144/ 16777216= 0.296 (0x004B C700/0x00FF FFFF)

(0.296 * 10.0) + 0.0 = 2.96

0x403D 70A4

AD2 Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

LSB = 100.0 / 0x007F FFFF = 100.0 / 2 = 100.0 / 8388608

Floating Point Scale = 100.0 = 100.0 V

Floating Point Offset = 0

UBIT Test Value

Example of A/D Reading

Test Value(volts)

Binary Value

Internal A/D Reading Value

Reading (Volts)

Single Precision Floating Point Value (IEEE-754)

30.0

30.0 * (8388608/100.0) = 2516582= 0x0026 6666

2482944/ 8388608= 0.296 (0x0025 E300/0x0000 7FFF)

(0.296 * 100.0) + 0.0 = 29.6

0x41EC CCCD

-30.0

-30.0 * (8388608/100.0) =-2516582 = 0xFFD9 999A

-2482944 / 8388608= -0.296 (0xFFDA 1D00/0x0000 7FFF)

(-0.296 * 100.0) + 0.0 =-29.6

0xC1EC CCCD

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

24

LSB = 100.0 / 0x00FF FFFF = 100.0 / 2 = 100.0 / 16777216

Floating Point Scale = 100.0 = 100.0 V

Floating Point Offset = 0

UBIT Test Value

Example of A/D Reading

Test Value(volts)

Binary Value

Internal A/D Reading Value

Reading (Volts)

Single Precision Floating Point Value (IEEE-754)

30.0

30.0 * (16777216/100.0) = 5033164= 0x004C CCCC

4966144/ 16777216= 0.296 (0x004B C700/0x00FF FFFF)

(0.296 * 100.0) + 0.0 = 29.6

0x41EC CCCD

AD3 Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 25.0 mA)

LSB = 25.0 / 0x007F FFFF = 25.0 / 2 = 25.0 / 8388608

Floating Point Scale = 25.0 = 25.0 mA

Floating Point Offset = 0

UBIT Test Value

Example of A/D Reading

Test Value(mA)

Binary Value

Internal A/D Reading Value

Reading (mA)

Single Precision Floating Point Value (IEEE-754)

3.0

3.0 * (8388608/25.0) = 1006632= 0x000F 5C28

993280/ 8388608= 0.1184 (0x000F 2800/0x007F FFFF)

(0.1184 * 25.0) + 0.0 = 2.96

0x403D 70A4

-3.0

-3.0 * (8388608/25.0) =-1006632= 0xFFF0 A3D8

-993280/ 8388608= -0.1184 (0xFFF0 D800/0x007F FFFF)

(-0.1184 * 25.0) + 0.0 =-2.9

0xC03D 70A4

  1. Polarity & Range Register = 0x00 (Polarity = Unipolar Range = 25.0 mA)

24

LSB = 25.0 / 0x00FF FFFF = 25.0 / 2 = 25.0 / 16777216

Floating Point Scale = 25.0 = 25.0 mA

Floating Point Offset = 0

UBIT Test Value

Example of A/D Reading

Test Value(mA)

Binary Value

Internal A/D Reading Value

Reading (mA)

Single Precision Floating Point Value (IEEE-754)

3.0

3.0 * (16777216/25.0) = 2013265= 0x001E B851

1986304/ 16777216= 0.1184 (0x001E 4F00/0x00FF FFFF)

(0.1184 * 25.0 + 0.0 = 2.96

0x403D 70A4

Threshold Programming

In Floating Point mode, the Threshold Detect Level and Threshold Detect Hysteresis values should be entered in

Value (IEEE-754) format.

For example:

AD1 Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

OR

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0V)

Floating Point Scale = 10.0 = 10.0 V

Floating Point Offset = 0

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value

Single Precision Floating Point Value (IEEE-754)

Hysteresis

Single Precision Floating Point Value (IEEE-754)

7.5

0x40F0 0000

0.25

0x3E80 0000

-7.5

0xC0F0 0000

0.15

0x3E19 999A

AD2 Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

OR

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0V)

Floating Point Scale = 100.0 = 100.0 V

Floating Point Offset = 0

Threshold Detect Level Value (volts)

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value

Single Precision Floating Point Value (IEEE-754)

Hysteresis

Single Precision Floating Point Value (IEEE-754)

75.0

0x4296 0000

2.5

0x4020 0000

-7.5

0xC0F0 0000

0.15

0x3FC0 0000

AD3 Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 25.0 mA)

OR

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 25.0 mA)

Floating Point Scale = 25.0 = 25 mA

Floating Point Offset = 0

Threshold Detect Level Value (mA)

Threshold Detect Hysteresis Value (mA) (must be positive)

Level Value

Single Precision Floating Point Value (IEEE-754)

Hysteresis

Single Precision Floating Point Value (IEEE-754)

20.0

0x41A4 0000

0.5

0x3F00 0000

-20.5

0xC1A4 0000

0.25

0x3E80 0000

Saturation Programming

In Floating Point mode, the Low and High Saturation values should be entered in

For example:

AD1 Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

Single Precision Floating Point Value (IEEE-754) format.

OR

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0V)

Floating Point Scale = 10.0 = 10.0 V

Floating Point Offset = 0

Low Saturation Value (volts)

High Saturation Value (volts)

Value

Single Precision Floating Point Value (IEEE-754)

Values

Single Precision Floating Point Value (IEEE-754)

-7.5

0xC0F0 0000

7.5

0xC0F0 0000

AD2 Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

OR

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0V)

Floating Point Scale = 100.0 = 100.0 V

Floating Point Offset = 0

Low Saturation Value (volts)

High Saturation Value (volts)

Value

Single Precision Floating Point Value (IEEE-754)

Values

Single Precision Floating Point Value (IEEE-754)

-75.5

0xC296 0000

75.0

0x4296 0000

AD3 Modules:

  1. Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 25.0 mA)

OR

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 25.0 mA)

Floating Point Scale = 25.0 = 25.0 mA

Floating Point Offset = 0

Low Saturation Value (mA)

High Saturation Value (mA)

Value

Single Precision Floating Point Value (IEEE-754)

Values

Single Precision Floating Point Value (IEEE-754)

-20.5

0xC1A4 0000

20.5

0x41A4 0000

Floating Point Mode Engineering Units Programming

When in Floating Point Mode, the registers listed in the Integer Mode Programming section are still dependent on the Polarity and Range settings, however, the module handles the conversion of the 32-bit binary value to Single Precision Floating Point Value (IEEE 754) format. The values in the Floating Point Scale register and Floating Point Offset register are used in the conversion. For results to be represent engineering units:

Set Floating Point Scale register to Range * Engineering Unit Conversion

Set Floating Point Offset register to Engineering Unit Conversion Bias

A/D Readings

The following calculation is used to convert A/D Reading to engineering units:

AD Data in Engineering Units (Floating Point) =

(AD Value (Volts/Current) * Floating Point Scale) + Floating Point Offset

For example:

AD1 Modules:

a.

A signal of -10V to 10V indicate a displacement from -38.5mm to 38.5 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10.0 * 3.85 = 38.5

Floating Point Offset = 0.0

Voltage (volts)

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (mm)

Single Precision Floating Point Value (IEEE-754)

10.0

8388608/ 8388608= 1.0 (0x007F FFFF/0x007F FFFF)

(1.0 * 38.5) + 0.0 = 38.5

0x421A 0000

5.0

4194304 / 8388608= 0.5 (0x0040 0000/0x007F FFFF)

(0.5 * 38.5) + 0.0 = 19.25

0x419A 0000

4.5

3774720/ 8388608= 0.45 (0x0039 9900/0x007F FFFF)

(0.45 * 38.5) + 0.0 = 17.325

0x418A 999A

0.0

0 /8388608= 0.0 (0x0000 0000/0x007F FFFF)

(0.0 * 38.5) + 0.0 = 0.0

0x0000 0000

-0.0305

-25600 / 8388608= -0.00305 (0xFFFF 9C00/0x007F FFFF)

(-0.00305 * 38.5) + 0.0 = 0.117425

0x3DF0 7C85

-5.0

-4194304 / 8388608= -0.5 (0xFFC0 00000/0x007F FFFF)

(-0.5 * 38.5) + 0.0 = -19.25

0xC19A 0000

-10.0

-8388608 / 8388608= -1.0 (0xFF80 0000/0x007F FFFF)

(-1.0 * 38.5) + 0.0 = -38.5

0xC21A 0000

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10 * 125 = 1250

Floating Point Offset = -125

Note: Set Low Saturation Value to the equivalent of 1 volt and High Saturation Value to the equivalent to 5 volts.

Voltage (volts)

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (mm)

Single Precision Floating Point Value (IEEE-754)

5.0

8388608/ 16777216= 0.5 (0x0080 0000/0x00FF FFFF)

(0.5 * 1250) +(-125) = 500

0x43FA 0000

4.0

6710784/ 16777216= 0.4 (0x0066 6600/0x00FF FFFF)

(0.4 * 1250) + (-125) = 375.0

0x43BB 8000

3.0

5033216/ 16777216= 0.3 (0x004C CD00/0x00FF FFFF)

(0.3 * 1250) + (-125) = 250.0

0x437A 0000

2.5

4194304/ 16777216= 0.25 (0x0040 0000/0x00FF FFFF)

(0.25 * 1250) + (-125) = 187.5

0x433B 8000

2.0

3355392/ 16777216= 0.2 (0x0033 3300/0x00FF FFFF)

(0.2 * 1250) + (-125) = 125.0

0x42FA 0000

1.0

1677824/ 16777216= 0.1 (0x0019 9A00/0x00FF FFFF)

(0.1 * 1250) + (-125) = 0.0

0x0000 0000

AD2 Modules:

a.

A signal of -100V to 100V indicate a displacement from -385mm to 385 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

Floating Point Scale = Range * Scale Conversion = 100.0 * 3.85 = 38.5

Floating Point Offset = 0.0

Voltage (volts)

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (mm)

Single Precision Floating Point Value (IEEE-754)

10.0

8388608/ 8388608= 1.0 (0x007F FFFF/0x007F FFFF)

(0.5 * 1250) +(-125) = 500

0x43C 0000

5.0

4194304 / 8388608= 0.5 (0x0040 0000/0x007F FFFF)

(0.5 * 385) + 0.0 = 192.5

0x4340 8000

4.5

3774720/ 8388608= 0.45 (0x0039 9900/0x007F FFFF)

(0.45 * 385) + 0.0 = 173.25

0x432D 0000

0.0

0 /8388608= 0.0 (0x0000 0000/0x007F FFFF)

(0.0 * 385) + 0.0 = 0.0

0x0000 0000

-0.0305

-25600 / 8388608= -0.00305 (0xFFFF 9C00/0x007F FFFF)

(-0.00305 * 385) + 0.0 = 1.17425

0x3F96 4DD3

-5.0

-4194304 / 8388608= -0.5 (0xFFC0 00000/0x0000 7FFF)

(-0.5 * 385) + 0.0 = -192.5

0xC340 8000

-10.0

-8388608 / 8388608= -1.0 (0xFF80 0000/0x007F FFFF)

(-1.0 * 385) + 0.0 = -385

0xC3C0 8000

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 10-50 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

Floating Point Scale = Range * Scale Conversion = 100 * 125 = 12500

Floating Point Offset = -1250

Note: Set Low Saturation Value to the equivalent of 10 volts and High Saturation Value to the equivalent to 50 volts

Voltage (volts)

Example of Internal A/D Reading Value

Applying Floating Point Scale and Offset (mm)

Single Precision Floating Point Value (IEEE-754)

50.0

8388608/ 16777216= 0.5 (0x0080 0000/0x00FF FFFF)

(0.5 * 12500) + (-1250) =5000.0

0x459C 4000

40.0

6710784/ 16777216= 0.4 (0x0066 6600/0x00FF FFFF)

(0.4 * 12500) + (-1250) = 3750.0

0x456A 6000

30.0

5033216/ 16777216= 0.3 (0x004C CD00/0x00FF FFFF)

(0.3 * 12500) + (-125) = 2500.0

0x451C 4000

25.0

4194304/ 16777216= 0.25 (0x0040 0000/0x00FF FFFF)

(0.25 * 12500) + (-1250) = 1875.5

0x44EA 6000

20.0

3355392/ 16777216= 0.2 (0x0033 3300/0x00FF FFFF)

(0.2 * 12500) + (-1250) = 1250.0

0x449C 04000

10.0

1677824/ 16777216= 0.1 (0x0019 9A00/0x00FF FFFF)

(0.1 * 12500) + (-1250) = 0.0

0x0000 0000

UBIT Test Programming

The value to set in the UBIT Test Data register is dependent on the Polarity and Range settings and these settings will determine the 32-bit value

to set in this register. In the Floating Point mode, the A/D Reading register will represent the voltage (AD1, AD2) or current (AD3) measured and

converted to engineering units as the result of setting the UBIT test value.

For example:

AD1 Modules:

a.

A signal of -10V to 10V indicate a displacement from -38.5mm to 38.5 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10.0 * 3.85 = 38.5

Floating Point Offset = 0.0

UBIT Test Value

Example of A/D Reading

Test Value(volts)

Binary Value

Internal A/D Reading Value

Reading (mm)

Single Precision Floating Point Value (IEEE-754)

3.0

3.0 * (8388608/10.0) = 2516582= 0x0026 6666

2482944/ 8388608= 0.296 (0x0025 E300/0x007F FFFF)

(0.296 * 38.5) + 0.0 = 11.396

0x4136 5604

-3.0

-3.0 * (8388608/10.0) = -2516582= 0xFFD9 999A

-2482944/ 8388608= -0.296(0xFFDA 1D00/0x007F FFFF)

(-0.296 * 38.5) + 0.0 =-11.396

0xC136 0xC136

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10 * 125 = 1250

Floating Point Offset = -125

UBIT Test Value

Example of A/D Reading

Test Value(volts)

Binary Value

Internal A/D Reading Value

Reading (PSI)

Single Precision Floating Point Value (IEEE-754)

3.0

3.0 * (16777216/10.0) = 5033164= 0x004C CCCC

4966144/ 16777216= 0.296(0x004B C700/0x00FF FFFF)

(0.296 * 1250) + 0.0 = 370.0

0x43B9 0000

AD2 Modules:

a.

A signal of -10V to 10V indicate a displacement from -385mm to 385 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

Floating Point Scale = Range * Scale Conversion = 100.0 * 3.85 = 385

Floating Point Offset = 0.0

UBIT Test Value

Example of A/D Reading

Test Value(volts)

Binary Value

Internal A/D Reading Value

Reading (mm)

Single Precision Floating Point Value (IEEE-754)

30.0

3.0 * (8388608/10.0) = 2516582= 0x0026 6666

2482944/ 8388608= 0.296 (0x0025 E300/0x007F FFFF)

(0.296 * 385) + 0.0 = 113.96

0x42E3 EB85

-30.0

-3.0 * (8388608/10.0) = -2516582= 0xFFD9 999A

-2482944/ 8388608= -0.296(0xFFDA 1D00/0x007F FFFF)

(-0.296 * 385) + 0.0 =-113.96

0xC2E3 EB85

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 10-50 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

Floating Point Scale = Range * Scale Conversion = 100 * 1250 = 12500

Floating Point Offset = -125

UBIT Test Value

Example of A/D Reading

Test Value(volts)

Binary Value

Internal A/D Reading Value

Reading (PSI)

Single Precision Floating Point Value (IEEE-754)

30.0

30.0 * (16777216/10.0) = 5033164= 0x004C CCCC

4966144/ 16777216= 0.296(0x004B C700/0x00FF FFFF)

(0.296 * 12500) + 0.0 = 3700.0

0x4567 0000

Threshold Programming

In Floating Point mode, the Threshold Detect Level and Threshold Detect Hysteresis values should be entered in

Value (IEEE-754) format in terms of

engineering units.

For example:

AD1 Modules:

a.

A signal of -10V to 10V indicate a displacement from -38.5mm to 38.5 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10.0 * 3.85 = 38.5

Floating Point Offset = 0.0

Threshold Detect Level Value

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

7.5

6291456/ 8388608= 0.75 (0x0060 0000/0x007F FFFF)

(0.75 * 38.5) + 0 = 28.875 0x41E7 0000

0.25

209664/ 8388608= 0.025 (0x0003 3300/0x0000 7FFF) (0.025 * 38.5) + 0 =

0.9625 0x3F76 6666

-7.5

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10 * 125 = 1250

Floating Point Offset = -125

Note: Set Low Saturation Value to the equivalent of 1 volt and High Saturation Value to the equivalent to 5 volts

Threshold Detect Level Value

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

7.5

12582912/ 16777216= 0.75 (0x00C0 0000/0x00FF FFFF)

(0.75 * 38.5) + 0 = 28.875 0x41E7 0000

0.25

419328/ 16777216= 0.025 (0x0006 6600/ 0x00FF FFFF)

(0.025 * 38.5) + 0 = 0.9625 0x3F76 666

-7.5

12582912/ 16777216= -0.75 (0xFF40 0000/0x00FF FFFF)

(-0.75 * 38.5) + 0 =-28.875

0xC1E7 0000

0.15

251648/ 16777216= 0.015 (0x0003 D700/ 0x00FF FFFF)

(0.015 * 38.5) + 0 = 0.5775 0x3F13 D70A

AD2 Modules:

a.

A signal of -100V to 100V indicate a displacement from -385mm to 385 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

Floating Point Scale = Range * Scale Conversion = 100.0 * 3.85 = 385

Floating Point Offset = 0.0

Threshold Detect Level Value

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

75

6291456/ 8388608= 0.75 (0x0060 0000/0x007F FFFF)

(0.75 * 385) + 0 = 288.75 0x41E7 6000

2.5

209664/ 8388608= 0.025 (0x0003 3300/0x0000 7FFF)

(0.025 * 385) + 0 = 9.625 0x411A 0000

-75

6291456/ 8388608=-0.75 (0xFFA0 0000/0x007F FFFF)

(-0.75 * 385) + 0 =-288.75

0Xc390 6000

1.5

125952/ 8388608= 0.015 (0x0001 EC00/0x0000 7FFF)

(0.015 * 385) + 0 = 5.775 0x40B8 CCCD

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 10-50 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

Floating Point Scale = Range * Scale Conversion = 100 * 1250 = 12500

Floating Point Offset = -1250

Note: Set Low Saturation Value to the equivalent of 10 volts and High Saturation Value to the equivalent to 50 volts.

Threshold Detect Level Value

Threshold Detect Hysteresis Value (volts) (must be positive)

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

75

12582912/ 16777216= 0.75 (0x00C0 0000/0x00FF FFFF)

(0.75 * 38.5) + 0 = 28.875 0x41E7 0000

2.5

419328/ 16777216= 0.025 (0x0006 6600/ 0x00FF FFFF)

(0.025 * 385) + 0 = 9.625 0x411A 0000

-75

-12582912/ 16777216= -0.75 (0xFF40 0000/0x00FF FFFF)

(-0.75 * 38.5) + 0 =-28.875

0xC1E7 0000

1.5

251648/ 16777216= 0.015 (0x0003 D700/ 0x00FF FFFF)

(0.015 * 385) + 0 = 5.775 0x40B8 CCCD

Saturation Programming

In Floating Point mode, the Low and High Saturation values should be entered in

For example:

AD1 Modules:

a.

Single Precision Floating Point Value (IEEE-754) format.

A signal of -10V to 10V indicate a displacement from -38.5mm to 38.5 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10.0 * 3.85 = 38.5

Floating Point Offset = 0.0

Low Saturation Value

Low Saturation Value

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

9.5

-7969280/ 8388608=-0.95 (0xFF86 600/ 0x007F FFFF)

(-0.95 * 38.5) + 0 =-36.575 0xC212 4CCD

9.5

7969280/ 8388608= 0.95 (0x0079 9A00/0x007F FFFF)

(0.95 * 38.5) + 0 36.575 0x4212 4CCD

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 10.0 V)

Floating Point Scale = Range * Scale Conversion = 10 * 125 = 1250

Floating Point Offset = -125

Note: Set Low Saturation Value to the equivalent of 1 volt and High Saturation Value to the equivalent to 5 volts.

Low Saturation Value

Low Saturation Value

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

1.0

1677721/ 16777216= 0.1 (0x0019 9999/ 0x00FF FFFF)

(0.1 * 1250) + (-125) =

0.0

0x0000 0000

5.0

8388608/ 16777216= 0.5 (0x0008 0000/ 0x00FF FFFF)

(0.5 * 1250) +(-125) = 500.0 0x43FA 0000

AD2 Modules:

a.

A signal of -10V to 10V indicate a displacement from -385mm to 385 mm respectively.

Polarity & Range Register = 0x10 (Polarity = Bipolar & Range = 100.0 V)

Floating Point Scale = Range * Scale Conversion = 100.0 * 3.85 = 385

Floating Point Offset = 0.0

Low Saturation Value

Low Saturation Value

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

-95

-7969280/ 8388608=-0.95 (0xFF86 600/ 0x007F FFFF)

(-0.95 * 385) + 0 =-36.575

0xC3B6 E000

95

7969280/ 8388608= 0.95 (0x0079 9A00/0x007F FFFF)

(0.95 * 385) + 0 =

365.75 0x43B6 E000

  1. A pressure sensor is used to measure 0-500 PSI where the voltage reading are 1-5 volts.

Polarity & Range Register = 0x00 (Polarity = Unipolar & Range = 100.0 V)

Floating Point Scale = Range * Scale Conversion = 100 * 1250 = 12500

Floating Point Offset = -1250

Note: Set Low Saturation Value to the

equivalent of 10 volts and High Saturation Value to the equivalent to 50 volts.

Low Saturation Value

Low Saturation Value

Level Value(volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

Hysteresis (volts)

Binary Value

Applying Floating Point Scale and Offset (mm)

10.0

1677721/ 16777216= 0.1 (0x0019 9999/ 0x00FF FFFF)

(0.1 * 12500) + (-1250) = 0.0 0x0000 0000

50.0

8388608/ 16777216= 0.5 (0x0008 0000/ 0x00FF FFFF)

(0.5 * 12500) + (-1250) = 5000.0 0x459C 4000

APPENDIX B: REGISTER NAME CHANGES FROM PREVIOUS RELEASES

This section provides a mapping of the register names used in this document against register names used in previous releases.

Rev C2 - Register Names

Rev C - Register Names

A/D Measurement Registers

A/D Reading

A/D Reading

A/D Control Registers

Polarity & Range

Polarity & Range

Sample Rate

Sample Rate

Filter Break Frequency

Filter Break Frequency

Acquisition/Conversion Time

Acquisition/Conversion Time

Latch All A/D Channels

Latch All A/D Channels

A/D Test Registers

Test Enabled

Test Enabled

Test CBIT Verify

Test CBIT Verify

UBIT Test Data

UBIT Test Data

UBIT Polarity

D0 Polarity

FIFO Registers

FIFO Buffer Data

FIFO Buffer Data

FIFO Word Count

FIFO Word Count

FIFO Almost Empty

FIFO Almost Empty

FIFO Low Watermark

FIFO Low Watermark

FIFO High Watermark

FIFO High Watermark

FIFO Almost Full

FIFO Almost Full

FIFO Buffer Size

FIFO Buffer Size

FIFO Buffer Control

FIFO Buffer Control

FIFO Sample Delay

FIFO Sample Delay

FIFO Sample Delay

FIFO Sample Delay

Clear FIFO

Clear FIFO

Reset FIFO Timestamp

Reset FIFO Timestamp

FIFO Trigger Control

FIFO Trigger Control

FIFO Software Trigger

FIFO Software Trigger

Threshold Detect Programming Registers

Threshold Detect Level 1

Threshold Detect Level 1

Threshold Detect Level 2

Threshold Detect Level 2

Threshold Detect Hysteresis 1

Threshold Detect Hysteresis 1

Threshold Detect Hysteresis 2

Threshold Detect Hysteresis 2

Threshold Detect Control

Threshold Detect Control

Saturation Programming Registers

Low Saturation

Low Saturation

High Saturation

High Saturation

Saturation Control

Saturation Control

Engineering Scaling Conversions Registers

Enable Floating Point Mode

Enable Floating Point Mode

Floating Point Offset

Floating Point Offset

Floating Point Scale

Floating Point Scale

Floating Point State

Floating Point State

Background BIT Threshold Programming Registers

Background BIT Threshold

Background BIT Threshold

BIT Count Clear

Reset BIT

Status and Interrupt Registers

Channel Status Enable

Channel Status Enabled

BIT Dynamic Status

BIT Dynamic Status

BIT Latched Status

BIT Latched Status

BIT Interrupt Enable

BIT Interrupt Enable

BIT Set Edge/Level Interrupt

BIT Set Edge/Level Interrupt

FIFO Dynamic Status

FIFO Dynamic Status

FIFO Latched Status

FIFO Latched Status

FIFO Interrupt Enable

FIFO Interrupt Enable

FIFO Set Edge/Level Interrupt

FIFO Set Edge/Level Interrupt

Overcurrent Dynamic Status

Overcurrent Dynamic Status

Overcurrent Latched Status

Overcurrent Latched Status

Overcurrent Interrupt Enable

Overcurrent Interrupt Enable

Overcurrent Set Edge/Level Interrupt

Overcurrent Set Edge/Level Interrupt

Open/Over-Voltage Dynamic Status

Open Dynamic Status

Open/Over-Voltage Latched Status

Open Latched Status

Open/Over-Voltage Interrupt Enable

Open Status Interrupt Enable

Open/Over-Voltage Set Edge/Level Interrupt

Open Status Set Edge/Level Interrupt

External Power Loss Dynamic Status

External Power Loss Dynamic Status

External Power Loss Latched Status

External Power Loss Latched Status

External Power Loss Interrupt Enable

External Power Loss Interrupt Enable

External Power Loss Set Edge/Level Interrupt

External Power Loss Set Edge/Level Interrupt

Threshold Detect Dynamic Status

Threshold Detect Dynamic Status

Threshold Detect Latched Status

Threshold Detect Latched Status

Threshold Detect Interrupt Enable

Threshold Interrupt Enable

Threshold Detect Set Edge/Level Interrupt

Threshold Set Edge/Level Interrupt

Saturation Dynamic Status

Saturation Dynamic Status

Saturation Latched Status

Saturation Latched Status

Saturation Latched Status

Saturation Latched Status

Saturation Set Edge/Level Interrupt

Saturation Set Edge/Level Interrupt

Front-end Amplifier Failure Dynamic Status

Front-end Amplifier Failure Dynamic Status

Front-end Amplifier Failure Latched Status

Front-end Amplifier Failure Latched Status

Front-end Amplifier Failure Interrupt Enable

Front-end Amplifier Failure Interrupt Enable

Front-end Amplifier Failure Set Edge/Level Interrupt

Front-end Amplifier Failure Set Edge/Level Interrupt

Front-end Amplifier Failure Set Edge/Level Interrupt

Inter-FPGA Failure Dynamic Status

Inter-FPGA Failure Latched Status

Inter-FPGA Failure Latched Status

Inter-FPGA Failure Interrupt Enable

Inter-FPGA Failure Interrupt Enable

Inter-FPGA Failure Set Edge/Level Interrupt

Inter-FPGA Failure Set Edge/Level Interrupt

Summary Dynamic Status

Summary Dynamic Status

Summary Latched Status

Summary Latched Status

Summary Interrupt Enable

Summary Interrupt Enable

Summary Set Edge/Level Interrupt

Summary Set Edge/Level Interrupt

Interrupt Vector

Interrupt Vector

Interrupt Steering

Interrupt Steering

APPENDIX C: PIN-OUT DETAILS

Pin-out details (for reference) are shown below, with respect to DATAIO. Additional information on pin-outs can be found in the Motherboard Operational Manuals

Module Signal

(Ref Only)

A/D (12 CH)

(AD1-3)

DATIO1

IN_CH01+

DATIO2

IN_CH01-

DATIO3

IN_CH02+

DATIO4

IN_CH02-

DATIO5

IN_CH03+

DATIO6

IN_CH03-

DATIO7

IN_CH04+

DATIO8

IN_CH04-

DATIO9

IN_CH05+

DATIO10

IN_CH05-

DATIO11

IN_CH06+

DATIO12

IN_CH06-

DATIO13

IN_CH07-

DATIO14

IN_CH07+

DATIO15

IN_CH08-

DATIO16

IN_CH08+

DATIO17

IN_CH09-

DATIO18

IN_CH09+-

DATIO19

IN_CH010-

DATIO20

IN_CH010+

DATIO21

IN_CH011-

DATIO22

IN_CH011+

DATIO23

IN_CH012-

DATIO24

IN_CH012+

DATIO25

DATIO26

DATIO27

DATIO28

VREF-OUT

DATIO29

GND (CMRP)

DATIO30

DATIO31

EXT-SYNC+

DATIO32

EXT-SYNC+

DATIO33

DATIO34

DATIO35

DATIO36

DATIO37

DATIO38

DATIO39

DATIO40

N/A

Notes

(CMRP)

The Common Mode Reference Point (CMRP) is an isolated reference connection for all the A/D Channels. For expected high common mode voltage applications, it is recommended that the pin designated as CMRP be referenced (direct or resistor coupled) to the signal source GND reference (must have current path between CMRP and signal source generator) to minimize common mode voltage within the acceptable specification range. All channels within the module are independent but share a common CMRP, which is isolated from system/power GND.

(bold text)

N/C or Pending

FIRMWARE REVISION NOTES

This section identifies the firmware revision in which specific features were released. Prior revisions of the firmware would not support the features listed.

Feature

FPGA

Bare Metal (BM)

Firmware Revision

Release Date

Firmware Revision

Release Date

POST/PBIT/SBIT

10.4

2/15/2022 at 04:19:12

2.4

8/10/2020 at 08:08:27

Background BIT Threshold Programming

10.1

8/09/2020 at 11:49:09

2.4

8/10/2020 at 08:08:27

Threshold and Saturation Programming

10.1

8/09/2020 at 11:49:09

2.4

8/10/2020 at 08:08:27

Engineering Scaling Conversions

10.1

8/09/2020 at 11:49:09

2.4

8/10/2020 at 08:08:27

Channel Status Enabled

10.0

8/09/2020 at 9:49:28

2.3

3/19/2020 at 14:39:01

Summary Status

10.1

8/09/2020 at 11:49:09

2.4

8/10/2020 at 08:08:27

STATUS AND INTERRUPTS

Status registers indicate the detection of faults or events. The status registers can be channel bit-mapped or event bit-mapped. An example of a channel bit-mapped register is the BIT status register, and an example of an event bit-mapped register is the FIFO status register.

For those status registers that allow interrupts to be generated upon the detection of the fault or the event, there are four registers associated with each status: Dynamic, Latched, Interrupt Enabled, and Set Edge/Level Interrupt.

Dynamic Status: The Dynamic Status register indicates the current condition of the fault or the event. If the fault or the event is momentary, the contents in this register will be clear when the fault or the event goes away. The Dynamic Status register can be polled, however, if the fault or the event is sporadic, it is possible for the indication of the fault or the event to be missed.

Latched Status: The Latched Status register indicates whether the fault or the event has occurred and keeps the state until it is cleared by the user. Reading the Latched Status register is a better alternative to polling the Dynamic Status register because the contents of this register will not clear until the user commands to clear the specific bit(s) associated with the fault or the event in the Latched Status register. Once the status register has been read, the act of writing a 1 back to the applicable status register to any specific bit (channel/event) location will “clear” the bit (set the bit to 0). When clearing the channel/event bits, it is strongly recommended to write back the same bit pattern as read from the Latched Status register. For example, if the channel bit-mapped Latched Status register contains the value 0x0000 0005, which indicates fault/event detection on channel 1 and 3, write the value 0x0000 0005 to the Latched Status register to clear the fault/event status for channel 1 and 3. Writing a “1” to other channels that are not set (example 0x0000 000F) may result in incorrectly “clearing” incoming faults/events for those channels (example, channel 2 and 4).

Interrupt Enable: If interrupts are preferred upon the detection of a fault or an event, enable the specific channel/event interrupt in the Interrupt Enable register. The bits in Interrupt Enable register map to the same bits in the Latched Status register. When a fault or event occurs, an interrupt will be fired. Subsequent interrupts will not trigger until the application acknowledges the fired interrupt by clearing the associated channel/event bit in the Latched Status register. If the interruptible condition is still persistent after clearing the bit, this may retrigger the interrupt depending on the Edge/Level setting.

Set Edge/Level Interrupt: When interrupts are enabled, the condition on retriggering the interrupt after the Latch Register is “cleared” can be specified as “edge” triggered or “level” triggered. Note, the Edge/Level Trigger also affects how the Latched Register value is adjusted after it is “cleared” (see below).

  • Edge triggered: An interrupt will be retriggered when the Latched Status register change from low (0) to high (1) state. Uses for edgetriggered interrupts would include transition detections (Low-to-High transitions, High-to-Low transitions) or fault detections. After “clearing” an interrupt, another interrupt will not occur until the next transition or the re-occurrence of the fault again.

  • Level triggered: An interrupt will be generated when the Latched Status register remains at the high (1) state. Level-triggered interrupts are used to indicate that something needs attention.

Interrupt Vector and Steering

When interrupts are enabled, the interrupt vector associated with the specific interrupt can be programmed with a unique number/identifier defined by the user such that it can be utilized in the Interrupt Service Routine (ISR) to identify the type of interrupt. When an interrupt occurs, the contents of the Interrupt Vector registers is reported as part of the interrupt mechanism. In addition to specifying the interrupt vector, the interrupt can be directed (“steered”) to the native bus or to the application running on the onboard ARM processor.

Interrupt Trigger Types

In most applications, limiting the number of interrupts generated is preferred as interrupts are costly, thus choosing the correct Edge/Level interrupt trigger to use is important.

Example 1: Fault detection

This example illustrates interrupt considerations when detecting a fault like an “open” on a line. When an “open” is detected, the system will receive an interrupt. If the “open” on the line is persistent and the trigger is set to “edge”, upon “clearing” the interrupt, the system will not regenerate another interrupt. If, instead, the trigger is set to “level”, upon “clearing” the interrupt, the system will re-generate another interrupt. Thus, in this case, it will be better to set the trigger type to “edge”.

Example 2: Threshold detection

This example illustrates interrupt considerations when detecting an event like reaching or exceeding the “high watermark” threshold value. In a communication device, when the number of elements received in the FIFO reaches the high-watermark threshold, an interrupt will be generated. Normally, the application would read the count of the number of elements in the FIFO and read this number of elements from the FIFO. After reading the FIFO data, the application would “clear” the interrupt. If the trigger type is set to “edge”, another interrupt will be generated only if the number of elements in FIFO goes below the “high watermark” after the “clearing” the interrupt and then fills up to reach the “high watermark” threshold value. Since receiving communication data is inherently asynchronous, it is possible that data can continue to fill the FIFO as the application is pulling data off the FIFO. If, at the time the interrupt is “cleared”, the number of elements in the FIFO is at or above the “high watermark”, no interrupts will be generated. In this case, it will be better to set the trigger type to “level”, as the purpose here is to make sure that the FIFO is serviced when the number of elements exceeds the high watermark threshold value. Thus, upon “clearing” the interrupt, if the number of elements in the FIFO is at or above the “high watermark” threshold value, another interrupt will be generated indicating that the FIFO needs to be serviced.

Dynamic and Latched Status Registers Examples

The examples in this section illustrate the differences in behavior of the Dynamic Status and Latched Status registers as well as the differences in behavior of Edge/Level Trigger when the Latched Status register is cleared.

Status and Interrupts Fig1

Figure 1. Example of Module’s Channel-Mapped Dynamic and Latched Status States

No Clearing of Latched Status

Clearing of Latched Status (Edge-Triggered)

Clearing of Latched Status (Level-Triggered)

Time

Dynamic Status

Latched Status

Action

Latched Status

Action

Latched

T0

0x0

0x0

Read Latched Register

0x0

Read Latched Register

0x0

T1

0x1

0x1

Read Latched Register

0x1

0x1

Write 0x1 to Latched Register

Write 0x1 to Latched Register

0x0

0x1

T2

0x0

0x1

Read Latched Register

0x0

Read Latched Register

0x1

Write 0x1 to Latched Register

0x0

T3

0x2

0x3

Read Latched Register

0x2

Read Latched Register

0x2

Write 0x2 to Latched Register

Write 0x2 to Latched Register

0x0

0x2

T4

0x2

0x3

Read Latched Register

0x1

Read Latched Register

0x3

Write 0x1 to Latched Register

Write 0x3 to Latched Register

0x0

0x2

T5

0xC

0xF

Read Latched Register

0xC

Read Latched Register

0xE

Write 0xC to Latched Register

Write 0xE to Latched Register

0x0

0xC

T6

0xC

0xF

Read Latched Register

0x0

Read Latched

0xC

Write 0xC to Latched Register

0xC

T7

0x4

0xF

Read Latched Register

0x0

Read Latched Register

0xC

Write 0xC to Latched Register

0x4

T8

0x4

0xF

Read Latched Register

0x0

Read Latched Register

0x4

Interrupt Examples

The examples in this section illustrate the interrupt behavior with Edge/Level Trigger.

Status and Interrupts Fig2

Figure 2. Illustration of Latched Status State for Module with 4-Channels with Interrupt Enabled

Time

Latched Status (Edge-Triggered – Clear Multi-Channel)

Latched Status (Edge-Triggered – Clear Single Channel)

Latched Status (Level-Triggered – Clear Multi-Channel)

Action

Latched

Action

Latched

Action

Latched

T1 (Int 1)

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Write 0x1 to Latched Register

Write 0x1 to Latched Register

Write 0x1 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear until T2.

0x1

T3 (Int 2)

Interrupt Generated Read Latched Registers

0x2

Interrupt Generated Read Latched Registers

0x2

Interrupt Generated Read Latched Registers

0x2

Write 0x2 to Latched Register

Write 0x2 to Latched Register

Write 0x2 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.

0x2

T4 (Int 3)

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x1

Interrupt Generated Read Latched Registers

0x3

Write 0x1 to Latched Register

Write 0x1 to Latched Register

Write 0x3 to Latched Register

0x0

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x3 is reported in Latched Register until T5.

0x3

Interrupt re-triggers Note, interrupt re-triggers after each clear until T7.

0x2

T6 (Int 4)

Interrupt Generated Read Latched Registers

0xC

Interrupt Generated Read Latched Registers

0xC

Interrupt Generated Read Latched Registers

0xE

Write 0xC to Latched Register

Write 0x4 to Latched Register

Write 0xE to Latched Register

0x0

Interrupt re-triggers Write 0x8 to Latched Register

0x8

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xE is reported in Latched Register until T7.

0xE

0x0

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0xC is reported in Latched Register until T8.

0xC

Interrupt re-triggers Note, interrupt re-triggers after each clear and 0x4 is reported in Latched Register always.

0x4

THRESHOLD AND SATURATION CAPABILITY

The Threshold and Saturation Capability is available on the following modules:

  • Analog-to-Digital (A/D) Modules

    • AD1 - 12 Channels Analog-to-Digital (Voltage Input Only) (±10 to ±1.25 VDC FSR)

    • AD2 - 12 Channels Analog-to-Digital (Voltage Input Only) (±100 to ±12.5 VDC FSR)

    • AD3 - 12 Channels Analog-to-Digital (Current Input Only) (±25 mA FSR)

    • AD4 - 16 Channels Analog-to-Digital (±10.0 to ±1.25 VDC or ±25 mA FSR)

    • AD5 - 16 Channels Analog-to-Digital (±50.0 to ±6.25 VDC FSR)

    • AD6 - 16 Channels Analog-to-Digital (±100 to ±12.5 VDC FSR)

    • ADE - 16 Channels Analog-to-Digital (Voltage Input Only) (±10 to ±0.625 VDC FSR)

    • ADF - 16 Channels Analog-to-Digital (Voltage Input Only) (±100 to ±6.25 VDC FSR)

PRINCIPLE OF OPERATION

The AD modules provide the ability to monitor the acquired data and set a status when the specific thresholds are reached.

Threshold Detect

There are two thresholds that can be independently programmed on the A/D modules. These thresholds are used to monitor the acquired data and set a status when the specified thresholds are reached. A configurable hysteresis may also be set to determine when the Threshold Detect registers are cleared. The threshold detection can be configured as a FIFO trigger to capture data based on a specified event. Refer to Figure 1 and Figure 2 for illustrations for Threshold Detect Programming.

threshold and saturation capability img1
threshold and saturation capability img2

Saturation Programming

A low and high saturation setting that can be independently programmed on the A/D modules. These saturation values are used to monitor the acquired data and set a status when the specified saturation is reached as well as setting the A/D reading to the saturation value. Saturation programming can be used to prevent the A/D reading from exceeding the saturation value. Refer to Figure 3 for illustrations of Saturation Programming

threshold and saturation capability img3

REGISTER DESCRIPTIONS

The register descriptions provide the register name, Type, Data Range, Read or Write information, Initialized Value, and a description of the function.

Threshold Detect Programming Registers

There are two threshold and hysteresis registers that can be independently programmed on the A/D modules.

Threshold Detect Level

The Threshold Detect Level registers sets the first and second threshold level values.

Threshold Detect Level 1

Function: Sets the first threshold level value

Type: signed binary word (32-bit) (Integer Mode) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Voltage Threshold Level values are dependent on Polarity and Range settings for the channel.

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: (AD4-AD6, ADE-ADF) 0x0000 0000 to 0x0000 FFFF; (AD1-AD3): 0x0000 0000 to 0x00FF FFFF

Bipolar (2’s complement. sign extended to 32 bits): (AD4-AD6, ADE-ADF) 0xFFFF 8000 to 0x0000 7FFF; (AD1-AD3): 0xFF80 0000 to 0x007F FFFF

Enable Floating Point Mode: 1 (Floating Point Mode) Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 90% of full scale (bipolar)

Threshold Detect Level 2

Function: Sets the second threshold level value.

Type: signed binary word (32-bit) (Integer Mode) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Voltage Threshold Level values are dependent on Polarity and Range settings for the channel.

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: (AD4-AD6, ADE-ADF) 0x0000 0000 to 0x0000 FFFF; (AD1-AD3): 0x0000 0000 to 0x00FF FFFF

Bipolar (2’s complement. sign extended to 32 bits): (AD4-AD6, ADE-ADF) 0xFFFF 8000 to 0x0000 7FFF; (AD1-AD3): 0xFF80 0000 to 0x007F FFFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: -90% of full scale (bipolar)

Threshold Detect Hysteresis

The Threshold Detect Hysteresis registers sets the first and second threshold hysteresis values. Note, the hysteresis value must be a positive value.

Threshold Detect Hysteresis 1

Function: Sets the first threshold hysteresis value. This value must be positive.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Voltage Threshold Hysteresis values are dependent on Polarity and Range settings for the channel.

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: (AD4-AD6, ADE-ADF) 0x0000 0000 to 0x0000 FFFF; (AD1-AD3): 0x0000 0000 to 0x00FF FFFF

Bipolar (2’s complement. sign extended to 32 bits): (AD4-AD6, ADE-ADF) 0xFFFF 8000 to 0x0000 7FFF; (AD1-AD3): 0xFF80 0000 to 0x007F FFFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Threshold Detect Hysteresis 2

Function: Sets the second threshold hysteresis value. This value must be positive.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Voltage Threshold Hysteresis values are dependent on Polarity and Range settings for the channel.

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: (AD4-AD6, ADE-ADF) 0x0000 0000 to 0x0000 FFFF; (AD1-AD3): 0x0000 0000 to 0x00FF FFFF

Bipolar (2’s complement. sign extended to 32 bits): (AD4-AD6, ADE-ADF) 0xFFFF 8000 to 0x0000 7FFF; (AD1-AD3): 0xFF80 0000 to 0x007F FFFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Threshold Detect Control

Function: Sets up detect control for the two thresholds for each channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: Set bit to 0 to detect above the threshold level. Set bit to 1 to detect below the threshold level.

Table 21. Threshold Detect Control

AD1-AD3

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D

AD4-AD6 and ADE-ADF

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ch16

Ch15

Ch14

Ch13

Ch12

Ch11

Ch10

Ch9

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

All A/D Modules

D15

D14

D13

D12

D1

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Saturation Programming Registers

A low and high saturation setting that can be independently programmed on the A/D modules.

Saturation Value

The Low Saturation Value registers sets value to report as A/D reading and sets the Saturation Status bit when the A/D data is below the low saturation value. The High Saturation Value registers sets value to report as A/D reading and sets the Saturation Status bit when the A/D data is above the high saturation value.

Low Saturation

Function: Sets the low saturation value.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Saturation Voltage values are dependent on Polarity and Range settings for the channel.

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: (AD4-AD6, ADE-ADF) 0x0000 0000 to 0x0000 FFFF; (AD1-AD3): 0x0000 0000 to 0x00FF FFFF

Bipolar (2’s complement. sign extended to 32 bits): (AD4-AD6, ADE-ADF) 0xFFFF 8000 to 0x0000 7FFF; (AD1-AD3): 0xFF80 0000 to 0x007F FFFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

High Saturation

Function: Sets the high saturation value.

Type: signed binary word (32-bit) or Single Precision Floating Point Value (IEEE-754) (Floating Point Mode)

Data Range: Saturation Voltage values are dependent on Polarity and Range settings for the channel.

Enable Floating Point Mode: 0 (Integer Mode)

Unipolar: (AD4-AD6, ADE-ADF) 0x0000 0000 to 0x0000 FFFF; (AD1-AD3): 0x0000 0000 to 0x00FF FFFF

Bipolar (2’s complement. sign extended to 32 bits): (AD4-AD6, ADE-ADF) 0xFFFF 8000 to 0x0000 7FFF; (AD1-AD3): 0xFF80 0000 to 0x007F FFFF

Enable Floating Point Mode: 1 (Floating Point Mode)

Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: 0

Saturation Control

Function: Sets up saturation control for the two saturation levels for each channel.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R/W

Initialized Value: 0

Operational Settings: Set bits to 1 to enable Saturation Control. Set bits to 0 to disable Saturation Control. Each channel control consists of two bits: Low Saturation Control ("Even' bits (B0, B2, B4,…​)) and High Saturation Control ("Odd' bits (B1, B3, B5,…​)).

Table 22. Saturation Control

AD1-AD3

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D

AD4-AD6 and ADE-ADF

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ch16

Ch15

Ch14

Ch13

Ch12

Ch11

Ch10

Ch9

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

All A/D Modules

D15

D14

D13

D12

D1

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Status and Interrupt

The A/D Module provides status registers for Threshold Detect and Saturation.

Threshold Detect Status

There are four registers associated with the Threshold Detect Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

0 = Normal; 1 = Outside of threshold range. The status is created based on the values set in the Threshold Detect 1 and Threshold Detect 2 registers. Bits D0 and D1 represent if channel 1 is outside the threshold for Threshold Detect 1 and Threshold Detect 2 respectively, Bits D2 and D3 represent if channel 2 is outside the threshold for Threshold Detect 1 and Threshold Detect 2 respectively, etc. This pattern continues for all channels.

Table 23. Threshold Detect Status

Threshold Detect Dynamic Status

Threshold Detect Latched Status

Threshold Detect Interrupt Enable

Threshold Detect Set Edge/Level Interrupt

AD1-AD3

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D

AD4-AD6 and ADE-ADF

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ch16

Ch15

Ch14

Ch13

Ch12

Ch11

Ch10

Ch9

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

All A/D Modules

D15

D14

D13

D12

D1

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

T2

T1

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Function: Sets the corresponding bit associated with the channel’s Threshold Detect error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x00FF FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

Saturation Status

There are four registers associated with the Saturation Status: Dynamic, Latched, Interrupt Enable, and Set Edge/Level Interrupt.

0 = Normal; 1 = Outside of saturation range. The status is created based on the values set in the Low Saturation and High Saturation registers. Bits D0 and D1 represent if channel 1 is outside the voltage for Low Saturation and High Saturation respectively, Bits D2 and D3 represent if channel 2 is outside the voltage for Low Saturation and High Saturation respectively, etc. This pattern continues for all channels.

Table 24. Saturation Status

Saturation Dynamic Status

Saturation Latched Status

Saturation Interrupt Enable

Saturation Set Edge/Level Interrupt

AD1-AD3

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

Ch12

Ch11

Ch10

Ch9

High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D

AD4-AD6 and ADE-ADF

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Ch16

Ch15

Ch14

Ch13

Ch12

Ch11

Ch10

Ch9

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

All A/D Modules

D15

D14

D13

D12

D1

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Ch8

Ch7

Ch6

Ch5

Ch4

Ch3

Ch2

Ch1

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

High

Low

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

Function: Sets the corresponding bit associated with the channel’s Saturation error.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x00FF FFFF

Read/Write: R (Dynamic), R/W (Latched, Interrupt Enable, Edge/Level Interrupt)

Initialized Value: 0

FUNCTION REGISTER MAP

Key:

Bold Italic = Configuration/Control

Bold Underline = Status

*When an event is detected, the bit associated with the event is set in this register and will remain set until the user clears the event bit. Clearing the bit requires writing a 1 back to the specific bit that was set when read (i.e. write-1-to-clear, writing a '1' to a bit set to '1' will set the bit to '0').

**Data is represented in Floating Point if Enable Floating Point Mode register is set to Floating Point Mode (1)

Threshold Detect Programming Registers

All A/D Modules

0x1980

Threshold Detect Level 1 Ch 1**

R/W

0x1A00

Threshold Detect Level 1 Hysteresis Ch 1**

R/W

0x1984

Threshold Detect Level 1 Ch 2**

R/W

0x1A04

Threshold Detect Level 2 Hysteresis Ch 1**

R/W

0x1988

Threshold Detect Level 1 Ch 3**

R/W

0x1A08

Threshold Detect Level 3 Hysteresis Ch 1**

R/W

0x198C

Threshold Detect Level 1 Ch 4**

R/W

0x1A0C

Threshold Detect Level 4 Hysteresis Ch 1**

R/W

0x1990

Threshold Detect Level 1 Ch 5**

R/W

0x1A10

Threshold Detect Level 5 Hysteresis Ch 1**

R/W

0x1994

Threshold Detect Level 1 Ch 6**

R/W

0x1A14

Threshold Detect Level 6 Hysteresis Ch 1**

R/W

0x1998

Threshold Detect Level 1 Ch 7**

R/W

0x1A18

Threshold Detect Level 7 Hysteresis Ch 1**

R/W

0x199C

Threshold Detect Level 1 Ch 8**

R/W

0x1A1C

Threshold Detect Level 8 Hysteresis Ch 1**

R/W

0x19A0

Threshold Detect Level 1 Ch 9**

R/W

0x1A20

Threshold Detect Level 9 Hysteresis Ch 1**

R/W

0x19A4

Threshold Detect Level 1 Ch 10**

R/W

0x1A24

Threshold Detect Level 10 Hysteresis Ch 1**

R/W

0x19A8

Threshold Detect Level 1 Ch 11**

R/W

0x1A28

Threshold Detect Level 11 Hysteresis Ch 1**

R/W

0x19AC

Threshold Detect Level 1 Ch 12**

R/W

0x1A2C

Threshold Detect Level 12 Hysteresis Ch 1**

R/W

AD4-AD6, ADE-ADF

0x19B0

Threshold Detect Level 1 Ch 13**

R/W

0x1A30

Threshold Detect Level 13 Hysteresis Ch 1**

R/W

0x19B4

Threshold Detect Level 1 Ch 14**

R/W

0x1A34

Threshold Detect Level 14 Hysteresis Ch 1**

R/W

0x19B8

Threshold Detect Level 1 Ch 15**

R/W

0x1A38

Threshold Detect Level 15 Hysteresis Ch 1**

R/W

0x19BC

Threshold Detect Level 1 Ch 16**

R/W

0x1A3C

Threshold Detect Level 16 Hysteresis Ch 1**

R/W

All A/D Modules

0x1A80

Threshold Detect Level 1 Ch 1**

R/W

0x1B00

Threshold Detect Level 1 Hysteresis Ch 1**

R/W

0x1A84

Threshold Detect Level 1 Ch 2**

R/W

0x1B04

Threshold Detect Level 2 Hysteresis Ch 1**

R/W

0x1A88

Threshold Detect Level 1 Ch 3**

R/W

0x1B08

Threshold Detect Level 3 Hysteresis Ch 1**

R/W

0x1A8C

Threshold Detect Level 1 Ch 4**

R/W

0x1B0C

Threshold Detect Level 4 Hysteresis Ch 1**

R/W

0x1A90

Threshold Detect Level 1 Ch 5**

R/W

0x1B10

Threshold Detect Level 5 Hysteresis Ch 1**

R/W

0x1A94

Threshold Detect Level 1 Ch 6**

R/W

0x1B14

Threshold Detect Level 6 Hysteresis Ch 1**

R/W

0x1A98

Threshold Detect Level 1 Ch 7**

R/W

0x1B18

Threshold Detect Level 7 Hysteresis Ch 1**

R/W

0x1A9C

Threshold Detect Level 1 Ch 8**

R/W

0x1B1C

Threshold Detect Level 8 Hysteresis Ch 1**

R/W

0x1AA0

Threshold Detect Level 1 Ch 9**

R/W

0x1B20

Threshold Detect Level 9 Hysteresis Ch 1**

R/W

0x1AA4

Threshold Detect Level 1 Ch 10**

R/W

0x1B24

Threshold Detect Level 10 Hysteresis Ch 1**

R/W

0x1AA8

Threshold Detect Level 1 Ch 11**

R/W

0x1B28

Threshold Detect Level 11 Hysteresis Ch 1**

R/W

0x1AAC

Threshold Detect Level 1 Ch 12**

R/W

0x1B2C

Threshold Detect Level 12 Hysteresis Ch 1**

R/W

AD4-AD6, ADE-ADF

0x1AB0

Threshold Detect Level 1 Ch 13**

R/W

0x1B30

Threshold Detect Level 13 Hysteresis Ch 1**

R/W

0x1AB4

Threshold Detect Level 1 Ch 14**

R/W

0x1B34

Threshold Detect Level 14 Hysteresis Ch 1**

R/W

0x1AB8

Threshold Detect Level 1 Ch 15**

R/W

0x1B38

Threshold Detect Level 15 Hysteresis Ch 1**

R/W

0x1ABC

Threshold Detect Level 1 Ch 16**

R/W

0x1B3C

Threshold Detect Level 16 Hysteresis Ch 1**

R/W

0x1C80

Threshold Detect Control

R/W

Saturation Programming Registers

All A/D Modules

0x1B80

Low Saturation Value Ch 1**

R/W

0x1B00

High Saturation Value Ch 1**

R/W

0x1B84

Low Saturation Value Ch 2**

R/W

0x1B04

High Saturation Value Ch 2**

R/W

0x1B88

Low Saturation Value Ch 3**

R/W

0x1B08

High Saturation Value Ch 3**

R/W

0x1B8C

Low Saturation Value Ch 4**

R/W

0x1B0C

High Saturation Value Ch 4**

R/W

0x1B90

Low Saturation Value Ch 5**

R/W

0x1B10

High Saturation Value Ch 5**

R/W

0x1B94

Low Saturation Value Ch 6**

R/W

0x1B14

High Saturation Value Ch 6**

R/W

0x1B98

Low Saturation Value Ch 7**

R/W

0x1B18

High Saturation Value Ch 7**

R/W

0x1B9C

Low Saturation Value Ch 8**

R/W

0x1B1C

High Saturation Value Ch 8**

R/W

0x1BA0

Low Saturation Value Ch 9**

R/W

0x1B20

High Saturation Value Ch 9**

R/W

0x1BA4

Low Saturation Value Ch 10**

R/W

0x1B24

High Saturation Value Ch 10**

R/W

0x1BA8

Low Saturation Value Ch 11**

R/W

0x1B28

High Saturation Value Ch 11**

R/W

0x1BAC

Low Saturation Value Ch 12**

R/W

0x1B2C

High Saturation Value Ch 12**

R/W

AD4-AD6, ADE-ADF

0x1BB0

Low Saturation Value Ch 13**

R/W

0x1B30

High Saturation Value Ch 13**

R/W

0x1BB4

Low Saturation Value Ch 14**

R/W

0x1B34

High Saturation Value Ch 14**

R/W

0x1BB8

Low Saturation Value Ch 15**

R/W

0x1B38

High Saturation Value Ch 15**

R/W

0x1BBC

Low Saturation Value Ch 16**

R/W

0x1B3C

High Saturation Value Ch 16**

R/W

0x1C90

Saturation Control

R/W

Status Registers

Threshold

0x0940

Dynamic Status

R

0x0944

Latched Status*

R/W

0x0948

Interrupt Enable

R/W

0x094C

Set Edge/Level Interrupt

R/W

Saturation

0x0960

Dynamic Status

R

0x0964

Latched Status*

R/W

0x0968

Interrupt Enable

R/W

0x096C

Set Edge/Level Interrupt

R/W

Interrupt Registers

The Interrupt Vector and Interrupt Steering registers are mapped to the Motherboard Memory Space and these addresses are absolute based on

the module slot position. In other words, do not apply the Module Address offset to these addresses.

0x0550

Module 1 Interrupt Vector 21 - Threshold

R/W

0x0650

Module 1 Interrupt Steering 21 - Threshold

R/W

0x0558

Module 1 Interrupt Vector 23 - Saturation

R/W

0x0658

Module 1 Interrupt Steering 23 - Saturation

R/W

0x0750

Module 2 Interrupt Vector 21 - Threshold

R/W

0x0850

Module 2 Interrupt Steering 21 - Threshold

R/W

0x0758

Module 2 Interrupt Vector 23 - Saturation

R/W

0x0858

Module 2 Interrupt Steering 23 - Saturation

R/W

0x0950

Module 3 Interrupt Vector 21 - Threshold

R/W

0x0A50

Module 3 Interrupt Steering 21 - Threshold

R/W

0x0958

Module 3 Interrupt Vector 23 - Saturation

R/W

0x0A58

Module 3 Interrupt Steering 23 - Saturation

R/W

0x0B50

Module 3 Interrupt Vector 21 - Threshold

R/W

0x0C50

Module 3 Interrupt Steering 21 - Threshold

R/W

0x0B58

Module 4 Interrupt Vector 23 - Saturation

R/W

0x0C58

Module 4 Interrupt Steering 23 - Saturation

R/W

0x0D50

Module 5 Interrupt Vector 21 - Threshold

R/W

0x0D50

Module 5 Interrupt Steering 21 - Threshold

R/W

0x0D58

Module 5 Interrupt Vector 23 - Saturation

R/W

0x0D58

Module 5 Interrupt Steering 23 - Saturation

R/W

0x0F50

Module 6 Interrupt Vector 21 - Threshold

R/W

0x1050

Module 6 Interrupt Steering 21 - Threshold

R/W

0x0F58

Module 6 Interrupt Vector 23 - Saturation

R/W

0x1058

Module 6 Interrupt Steering 23 - Saturation

R/W

MODULE COMMON REGISTERS

The registers described in this document are common to all NAI Generation 5 modules.

Module Information Registers

The registers in this section provide module information such as firmware revisions, capabilities and unique serial number information.

FPGA Version Registers

The FPGA firmware version registers include registers that contain the Revision, Compile Timestamp, SerDes Revision, Template Revision and Zynq Block Revision information.

FPGA Revision

Function: FPGA firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 25. FPGA Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Compile Timestamp

Function: Compile Timestamp for the FPGA firmware.

Type: unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the compile timestamp of the board’s FPGA

Operational Settings: The 32-bit value represents the Day, Month, Year, Hour, Minutes and Seconds as formatted in the table:

Table 26. FPGA Compile Timestamp

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

day (5-bits)

month (4-bits)

year (6-bits)

hr

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

hour (5-bits)

minutes (6-bits)

seconds (6-bits)

FPGA SerDes Revision

Function: FPGA SerDes revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the SerDes revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 27. FPGA SerDes Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Template Revision

Function: FPGA Template revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the template revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 28. FPGA Template Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FPGA Zynq Block Revision

Function: FPGA Zynq Block revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Zynq block revision of the board’s FPGA

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 29. FPGA Zynq Block Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Bare Metal Version Registers

The Bare Metal firmware version registers include registers that contain the Revision and Compile Time information.

Bare Metal Revision

Function: Bare Metal firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s Bare Metal

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 30. Bare Metal Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Bare Metal Compile Time

Function: Provides an ASCII representation of the Date/Time for the Bare Metal compile time.

Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the ASCII representation of the compile time of the board’s Bare Metal

Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time. The hexadecimal values in the field below represent: May 17 2019 at 15:38:32

Table 31. Bare Metal Compile Time (Note: little-endian order of ASCII values)

Word 1 (Ex. 0x2079614D)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Month ('y' - 0x79)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Month ('a' - 0x61)

Month ('M' - 0x4D)

Word 2 (Ex. 0x32203731)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Year ('2' - 0x32)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Day ('7' - 0x37)

Day ('1' - 0x31)

Word 3 (Ex. 0x20393130)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Year ('9' - 0x39)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year ('1' - 0x31)

Year ('0' - 0x30)

Word 4 (Ex. 0x31207461)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Hour ('1' - 0x31)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x74)

't' (0x61)

Word 5 (Ex. 0x38333A35)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minute ('8' - 0x38)

Minute ('3' - 0x33)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

':' (0x3A)

Hour ('5' - 0x35)

Word 6 (Ex. 0x0032333A)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

NULL (0x00)

Seconds ('2' - 0x32)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Seconds ('3' - 0x33)

':' (0x3A)

FSBL Version Registers

The FSBL version registers include registers that contain the Revision and Compile Time information for the First Stage Boot Loader (FSBL).

FSBL Revision

Function: FSBL firmware revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the revision of the board’s FSBL

Operational Settings: The upper 16-bits are the major revision, and the lower 16-bits are the minor revision.

Table 32. FSBL Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

FSBL Compile Time

Function: Provides an ASCII representation of the Date/Time for the FSBL compile time.

Type: 24-character ASCII string - Six (6) unsigned binary word (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Value corresponding to the ASCII representation of the Compile Time of the board’s FSBL

Operational Settings: The six 32-bit words provide an ASCII representation of the Date/Time.

The hexadecimal values in the field below represent: May 17 2019 at 15:38:32

Table 33. FSBL Compile Time (Note: little-endian order of ASCII values)

Word 1 (Ex. 0x2079614D)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Month ('y' - 0x79)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Month ('a' - 0x61)

Month ('M' - 0x4D)

Word 2 (Ex. 0x32203731)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Year ('2' - 0x32)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Day ('7' - 0x37)

Day ('1' - 0x31)

Word 3 (Ex. 0x20393130)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Space (0x20)

Year ('9' - 0x39)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Year ('1' - 0x31)

Year ('0' - 0x30)

Word 4 (Ex. 0x31207461)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Hour ('1' - 0x31)

Space (0x20)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

'a' (0x74)

't' (0x61)

Word 5 (Ex. 0x38333A35)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Minute ('8' - 0x38)

Minute ('3' - 0x33)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

':' (0x3A)

Hour ('5' - 0x35)

Word 6 (Ex. 0x0032333A)

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

NULL (0x00)

Seconds ('2' - 0x32)

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Seconds ('3' - 0x33)

':' (0x3A)

Module Serial Number Registers

The Module Serial Number registers include registers that contain the Serial Numbers for the Interface Board and the Functional Board of the module.

Interface Board Serial Number

Function: Unique 128-bit identifier used to identify the interface board.

Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Serial number of the interface board

Operational Settings: This register is for information purposes only.

Functional Board Serial Number

Function: Unique 128-bit identifier used to identify the functional board.

Type: 16-character ASCII string - Four (4) unsigned binary words (32-bit)

Data Range: N/A

Read/Write: R

Initialized Value: Serial number of the functional board

Operational Settings: This register is for information purposes only.

Module Capability

Function: Provides indication for whether or not the module can support the following: SerDes block reads, SerDes FIFO block reads, SerDes packing (combining two 16-bit values into one 32-bit value) and floating point representation. The purpose for block access and packing is to improve the performance of accessing larger amounts of data over the SerDes interface.

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0x0000 0107

Read/Write: R

Initialized Value: 0x0000 0103

Operational Settings: A “1” in the bit associated with the capability indicates that it is supported.

Table 34. Module Capability

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

Flt-Pt

0

0

0

0

0

Pack

FIFO Blk

Blk

Module Memory Map Revision

Function: Module Memory Map revision

Type: unsigned binary word (32-bit)

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Value corresponding to the Module Memory Map Revision

Operational Settings: The upper 16-bits are the major revision and the lower 16-bits are the minor revision.

Table 35. Module Memory Map Revision

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Major Revision Number

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Minor Revision Number

Module Measurement Registers

The registers in this section provide module temperature measurement information.

Temperature Readings Registers

The temperature registers provide the current, maximum (from power-up) and minimum (from power-up) Zynq and PCB temperatures.

Interface Board Current Temperature

Function: Measured PCB and Zynq Core temperatures on Interface Board.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB and Zynq core temperatures based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 202C, this represents PCB Temperature = 32° Celsius and Zynq Temperature = 44° Celsius.

Table 36. Interface Board Current Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Functional Board Current Temperature

Function: Measured PCB temperature on Functional Board.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0019, this represents PCB Temperature = 25° Celsius.

Table 37. Functional Board Current Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Interface Board Maximum Temperature

Function: Maximum PCB and Zynq Core temperatures on Interface Board since power-on.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the maximum measured PCB and Zynq core temperatures since power-on based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the maximum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 5569, this represents maximum PCB Temperature = 85° Celsius and maximum Zynq Temperature = 105° Celsius.

Table 38. Interface Board Maximum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Interface Board Minimum Temperature

Function: Minimum PCB and Zynq Core temperatures on Interface Board since power-on.

Type: signed byte (8-bits) for PCB and signed byte (8-bits) for Zynq core temperatures

Data Range: 0x0000 0000 to 0x0000 FFFF

Read/Write: R

Initialized Value: Value corresponding to the minimum measured PCB and Zynq core temperatures since power-on based on the table below

Operational Settings: The upper 16-bits are not used, and the lower 16-bits are the minimum PCB and Zynq Core Temperatures. For example, if the register contains the value 0x0000 D8E7, this represents minimum PCB Temperature = -40° Celsius and minimum Zynq Temperature = -25° Celsius.

Table 39. Interface Board Minimum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

PCB Temperature

Zynq Core Temperature

Functional Board Maximum Temperature

Function: Maximum PCB temperature on Functional Board since power-on.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 0055, this represents PCB Temperature = 85° Celsius.

Table 40. Functional Board Maximum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Functional Board Minimum Temperature

Function: Minimum PCB temperature on Functional Board since power-on.

Type: signed byte (8-bits) for PCB

Data Range: 0x0000 0000 to 0x0000 00FF

Read/Write: R

Initialized Value: Value corresponding to the measured PCB on the table below

Operational Settings: The upper 24-bits are not used, and the lower 8-bits are the PCB Temperature. For example, if the register contains the value 0x0000 00D8, this represents PCB Temperature = -40° Celsius.

Table 41. Functional Board Minimum Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

0

0

0

0

0

0

0

0

PCB Temperature

Higher Precision Temperature Readings Registers

These registers provide higher precision readings of the current Zynq and PCB temperatures.

Higher Precision Zynq Core Temperature

Function: Higher precision measured Zynq Core temperature on Interface Board.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Zynq Core temperature on Interface Board

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x002B 0271, this represents Zynq Core Temperature = 43.625° Celsius, and value 0xFFF6 0177 represents -10.375° Celsius.

Table 42. Higher Precision Zynq Core Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Interface PCB Temperature

Function: Higher precision measured Interface PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Interface PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/1000 of degree Celsius. For example, if the register contains the value 0x0020 007D, this represents Interface PCB Temperature = 32.125° Celsius, and value 0xFFE8 036B represents -24.875° Celsius.

Table 43. Higher Precision Interface PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Higher Precision Functional PCB Temperature

Function: Higher precision measured Functional PCB temperature.

Type: signed word (16-bits) for integer part and unsigned word (16-bits) for fractional part

Data Range: 0x0000 0000 to 0xFFFF FFFF

Read/Write: R

Initialized Value: Measured Functional PCB temperature

Operational Settings: The upper 16-bits represent the signed integer part of the temperature and the lower 16-bits represent the fractional part of the temperature with the resolution of 1/100 of degree Celsius. For example, if the register contains the value 0x0018 004B, this represents Functional PCB Temperature = 24.75° Celsius, and value 0xFFD9 0019 represents -39.25° Celsius.

Table 44. Higher Precision Functional PCB Temperature

D31

D30

D29

D28

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

Signed Integer Part of Temperature

D15

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

Fractional Part of Temperature

Module Health Monitoring Registers

The registers in this section provide module temperature measurement information. If the temperature measurements reaches the Lower Critical or Upper Critical conditions, the module will automatically reset itself to prevent damage to the hardware.

Module Sensor Summary Status

Function: The corresponding sensor bit is set if the sensor has crossed any of its thresholds.

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: This register provides a summary for module sensors. When the corresponding sensor bit is set, the Sensor Threshold Status register for that sensor will indicate the threshold condition that triggered the event.

Table 45. Module Sensor Summary Status

Bit(s)

Sensor

D31:D6

Reserved

D5

Functional Board PCB Temperature

D4

Interface Board PCB Temperature

D3:D0

Reserved

Module Sensor Registers

The registers listed in this section apply to each module sensor listed for the Module Sensor Summary Status register. Each individual sensor register provides a group of registers for monitoring module temperatures readings. From these registers, a user can read the current temperature of the sensor in addition to the minimum and maximum temperature readings since power-up. Upper and lower critical/warning temperature thresholds can be set and monitored from these registers. When a programmed temperature threshold is crossed, the Sensor Threshold Status register will set the corresponding bit for that threshold. The figure below shows the functionality of this group of registers when accessing the Interface Board PCB Temperature sensor as an example.

Module Sensor Registers
Sensor Threshold Status

Function: Reflects which threshold has been crossed

Type: unsigned binary word (32-bits)

Data Range: See table below

Read/Write: R

Initialized Value: 0

Operational Settings: The associated bit is set when the sensor reading exceed the corresponding threshold settings.

Table 46. Sensor Threshold Status

Bit(s)

Description

D31:D4

Reserved

D3

Exceeded Upper Critical Threshold

D2

Exceeded Upper Warning Threshold

D1

Exceeded Lower Critical Threshold

D0

Exceeded Lower Warning Threshold

Sensor Current Reading

Function: Reflects current reading of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents current sensor reading as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Minimum Reading

Function: Reflects minimum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents minimum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Maximum Reading

Function: Reflects maximum value of temperature sensor since power up

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R

Initialized Value: N/A

Operational Settings: The register represents maximum sensor value as a single precision floating point value. For example, for a temperature sensor, register value 0x41C6 0000 represents temperature = 24.75° Celsius.

Sensor Lower Warning Threshold

Function: Reflects lower warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC220 0000 represents temperature = -40.0° Celsius.

Sensor Lower Critical Threshold

Function: Reflects lower critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default lower critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor lower critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0xC25C 0000 represents temperature = -55.0° Celsius.

Sensor Upper Warning Threshold

Function: Reflects upper warning threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper warning threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper warning threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42AA 0000 represents temperature = 85.0° Celsius.

Sensor Upper Critical Threshold

Function: Reflects upper critical threshold of temperature sensor

Type: Single Precision Floating Point Value (IEEE-754)

Data Range: Single Precision Floating Point Value (IEEE-754)

Read/Write: R/W

Initialized Value: Default upper critical threshold (value dependent on specific sensor)

Operational Settings: The register represents sensor upper critical threshold as a single precision floating point value. For example, for a temperature sensor, register value 0x42FA 0000 represents temperature = 125.0° Celsius.

FUNCTION REGISTER MAP

Key

Bold Underline

= Measurement/Status/Board Information

Bold Italic

= Configuration/Control

Module Information Registers

0x003C

FPGA Revision

R

0x0030

FPGA Compile Timestamp

R

0x0034

FPGA SerDes Revision

R

0x0038

FPGA Template Revision

R

0x0040

FPGA Zynq Block Revision

R

0x0074

Bare Metal Revision

R

0x0080

Bare Metal Compile Time (Bit 0-31)

R

0x0084

Bare Metal Compile Time (Bit 32-63)

R

0x0088

Bare Metal Compile Time (Bit 64-95)

R

0x008C

Bare Metal Compile Time (Bit 96-127)

R

0x0090

Bare Metal Compile Time (Bit 128-159)

R

0x0094

Bare Metal Compile Time (Bit 160-191)

R

0x007C

FSBL Revision

R

0x00B0

FSBL Compile Time (Bit 0-31)

R

0x00B4

FSBL Compile Time (Bit 32-63)

R

0x00B8

FSBL Compile Time (Bit 64-95)

R

0x00BC

FSBL Compile Time (Bit 96-127)

R

0x00C0

FSBL Compile Time (Bit 128-159)

R

0x00C4

FSBL Compile Time (Bit 160-191)

R

0x0000

Interface Board Serial Number (Bit 0-31)

R

0x0004

Interface Board Serial Number (Bit 32-63)

R

0x0008

Interface Board Serial Number (Bit 64-95)

R

0x000C

Interface Board Serial Number (Bit 96-127)

R

0x0010

Functional Board Serial Number (Bit 0-31)

R

0x0014

Functional Board Serial Number (Bit 32-63)

R

0x0018

Functional Board Serial Number (Bit 64-95)

R

0x001C

Functional Board Serial Number (Bit 96-127)

R

0x0070

Module Capability

R

0x01FC

Module Memory Map Revision

R

Module Measurement Registers

0x0200

Interface Board PCB/Zynq Current Temperature

R

0x0208

Functional Board PCB Current Temperature

R

0x0218

Interface Board PCB/Zynq Max Temperature

R

0x0228

Interface Board PCB/Zynq Min Temperature

R

0x0218

Functional Board PCB Max Temperature

R

0x0228

Functional Board PCB Min Temperature

R

0x02C0

Higher Precision Zynq Core Temperature

R

0x02C4

Higher Precision Interface PCB Temperature

R

0x02E0

Higher Precision Functional PCB Temperature

R

Module Health Monitoring Registers

0x07F8

Module Sensor Summary Status

R

Module Sensor Registers Memory Map

Revision History

Module Manual - AD1-AD3 Revision History

Revision

Revision Date

Description

C

2023-06-08

EC0 C10429, transition to docbuilder format. Replaced "Specifications" section with "Data Sheet" section". Pg.7, updated AD3 input format. Pg.7, updated input impedance specs. Pg.7, changed Linearity/Accuracy to INL (Linearity); updated AD2 spec. Pg.7, updated AD2 offset error spec to +/-0.04%. Pg.7, updated bandwidth specs. Pg.7, changed Group Delay to Acquisition/Conversion Time & updated spec. Pg.7, updated Programmable Filter specs. Pg.7, updated AD1 CM voltage spec. Pg.7, updated Output Logic specs to 24-bit. Pg.7, updated AD1/AD2/A3 Power specs. Pg.7, added SNR specs. Pg.9, updated Introduction; replaced Features with AD1-AD3 Overview. Pg.9, revised "Built-In Test (BIT)/Diagnostic Capability" section. Pg.10-11, added A/D FIFO Buffering, Threshold & Saturation Programming, Status and Interrupts and Engineering Scaling Conversions.

Reorganized "Register Descriptions" and "Function Register Map" sections by register groupings.

Pg.12, changed A/D Reading data range to 24-bit. Pg.13, updated Sample Rate operational settings. Pg.14, added "Acquisition/Conversion Time" section. Pg.15, changed UBIT Test Data data range to 24-bit. Pg.15, updated UBIT Polarity operational settings. Pg.16, changed FIFO Buffer Data data range to 24-bit. Pg.16-17, changed FIFO AE/LW/HW/AF initialized value to 0x0.

Pg.18, changed FIFO Buffer Control to Data Control; updated Op Settings; added (post

programmable IIR) to Data Control bit D2; added bit D4 definition. Pg.18, changed FIFO Sample

Delay initialized value to 0x0. Pg.19, changed Clear FIFO and Reset FIFO Timestamp initialized

value to 0x0. Pg.20, updated FIFO Trigger Control bit functionality. Pg.21-22, added Threshold

Detect, Saturation, Engineering Scaling Conversion registers. Pg.23, added Background BIT

Threshold Programming registers. Pg.24, added Channel Status Enabled. Pg.26, changed Open

Status to Open/Over-Voltage Status. Pg.27, added Saturation Status register. Pg.28, added Inter

FPGA Failure and Summary Status registers. Pg.29, added Interrupt Vector and Steering. Pg.31,

changed FIFO Buffer Control to Data Control; Pg.33, added Threshold Detect, Saturation and

Engineering Scaling Conversion registers. Pg.34, added Background BIT register offsets. Pg.34

35, added Ext Power Loss, Saturation, Inter-FPGA Failure & Summary Status registers. Pg.37-42,

added Interrupt Vector and Steering. Added appendix A, B & C. Added "Firmware Revision Notes".

C1

2024-01-12

ECO C11152, pg.11/23/33, added module common registers.

C2

2024-04-29

Module Manual - AD Threshold and Saturation Programming Revision History

Revision

Revision Data

Description

C

2021-11-30

C08896; Transition manual to docbuilder format - no technical information change.

C1

2022-03-16

C09163, pg.15-17, changed "AD4-AD4" to "AD4-AD6".

C2

2023-01-24

ECO C010010, pg.8-9/11, added 24-bit integer mode data ranges.

C3

2023-06-20

ECO C10476, removed all ADG module references from manual.

C4

2024-04-18

ECO C11441, spelling correction ('2’s compliment' to '2’s complement); no technical info

change.

Module Manual - Module Common Registers Revision History

Revision

Revision Date

Description

C

2023-08-11

ECO C10649, initial release of module common registers manual.

NAI Cares

North Atlantic Industries (NAI) is a leading independent supplier of Embedded I/O Boards, Single Board Computers, Rugged Power Supplies, Embedded Systems and Motion Simulation and Measurement Instruments for the Military, Aerospace and Industrial Industries. We accelerate our clients’ time-to-mission with a unique approach based on a Configurable Open Systems Architecture™ (COSA®) that delivers the best of both worlds: custom solutions from standard COTS components.

We have built a reputation by listening to our customers, understanding their needs, and designing, testing and delivering board and system-level products for their most demanding air, land and sea requirements. If you have any applications or questions regarding the use of our products, please contact us for an expedient solution.

Please visit us at: www.naii.com or select one of the following for immediate assistance:

Application Notes

Calibration and Repairs

Call Us

(631) 567-1100

Help Bot

X